

2	
3	
4	
5	Scientific Committee on Emerging and Newly Identified Health Risks
6 7	SCENIHR
8	
9	
10	
11	
12	Preliminary Opinion
13	
14	Guidance on the Determination of Potential Health Effects of
15	Nanomaterials Used in Medical Devices
16	
17	
18	
19	
20	
	Scientific Committees
21	on health and environmental risks
22	
23	
24	
25	
26	
27	
28	SCENIHR adopted this preliminary opinion by written procedure on 17 July 2014
29	

1 About the Scientific Committees

Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat.

They are: the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), and are made up of external experts.

In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Evaluation Agency (EMEA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA).

13 SCENIHR

2

3

4

5

6

7

8 9

10

11 12

26

31

14 This Committee deals with questions related to emerging or newly identified health and 15 environmental risks and on broad, complex or multidisciplinary issues requiring a comprehensive assessment of risks to consumer safety or public health and related 16 17 issues not covered by other Community risk assessment bodies. Examples of potential 18 areas of activity include potential risks associated with interaction of risk factors, synergic 19 effects, cumulative effects, antimicrobial resistance, new technologies such as 20 nanotechnologies, medical devices including those incorporating substances of animal 21 and/or human origin, tissue engineering, blood products, fertility reduction, cancer of 22 endocrine organs, physical hazards such as noise and electromagnetic fields (from mobile 23 transmitters and electronically controlled home environments), phones, and 24 methodologies for assessing new risks. It may also be invited to address risks related to 25 public health determinants and non-transmissible diseases.

27 Scientific Committee members

28 Michelle Epstein, Igor Emri, Philippe Hartemann, Peter Hoet, Norbert Leitgeb, Luis
29 Martínez Martínez, Ana Proykova, Luigi Rizzo, Eduardo Rodriguez-Farré, Lesley Rushton,
30 Konrad Rydzynski, Theodoros Samaras, Emanuela Testai, Theo Vermeire

32 Contact:

- 33 European Commission
- 34 Health & Consumers
- 35 Directorate C: Public Health
- 36 Unit C2 Health Information/ Secretariat of the Scientific Committee
- 37 Office: HTC 03/073 L-2920 Luxembourg
- 38 <u>SANCO-C2-SCENIHR@ec.europa.eu</u>
- 39 © European Union, 2014

40 ISSN 1831-4783

41 doi: 10.2772/41391

ISBN 978-92-79-35590-5 ND-AS-14-001-EN-N

- 4243 The opinions of the Scientific Committees present the views of the independent scientists
- 44 who are members of the committees. They do not necessarily reflect the views of the
- 45 European Commission. The opinions are published by the European Commission in their
- 46 original language only.
- 47
- 48 <u>http://ec.europa.eu/health/scientific_committees/policy/index_en.htm</u>

ACKNOWLEDGMENTS

Members of the working group are acknowledged for their valuable contribution to this Opinion. The members of the working group are:

- SCENIHR members:
- Prof. Dr Ana Proykova, University of Sofia, Sofia, Bulgaria (Chair of the Working Group since April 2013).
- Prof. Dr Igor Emri, Centre for Experimental Mechanics, Faculty of Mechanical Engineering, University of Ljubljana, Slovenia.
- Prof. Philippe Hartemann, Professor of Public Health, Département Environnement et Santé Publique, Faculté de Médecine de Nancy, University of Lorraine, Nancy, France.
- Prof. Dr Konrad Rydzynski, Nofer Insitute of Occupational Medicine, Lodz, Poland.

- External experts:
- Dr Wim De Jong, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands (Chair of the Working Group until March 2013 and rapporteur).
- Prof. Dr Jim Bridges, United Kingdom.
- Prof. Dr Lars Bjursten, Lund University, Lund, Sweden.
- Dr Robert Geertsma, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
- Prof. Arne Hensten, UiT The Arctic University of Norway, Tromsö, Norway.
- Prof. Dr Nils Gjerdet, University of Bergen, Bergen, Norway.

- http://ec.europa.eu/health/scientific committees/emerging/members wg/index en.htm

1 ABSTRACT

2 This Guidance addresses the use of nanomaterials in medical devices and provides 3 information for risk assessors regarding specific aspects that need to be considered in the 4 safety evaluation of nanomaterials. According to the EU Recommendation for the 5 definition of a nanomaterial (Commission Recommendation 2011/969/EU, EC 2011) any 6 particulate substance with at least one dimension in the size range between 1 and 100 7 nm is considered a nanomaterial. These particles (nanoparticles) exhibit specific 8 characteristics that differ from the characteristics of larger sized particles with the same 9 chemical composition.

10 The use of nanomaterials in medical devices poses a challenge for the safety evaluation and risk assessment of these medical devices as the specific character of the 11 12 nanomaterial used should be taken into consideration. The various aspects of safety 13 evaluation and risk assessment of medical devices containing nanomaterials are 14 addressed in this Guidance. The use of nanomaterials in medical devices can vary 15 considerably. Examples are the use of free nanomaterials being a medical device and 16 administered to the patient as such (e.g. iron oxide or gold nanomaterials for heat 17 therapy against cancer), free nanomaterials in a paste-like formulation (e.g dental filling 18 composites), free nanomaterials added to a medical device (e.g. nanosilver as antibacterial agent in wound dressings), fixed nanomaterials forming a coating on 19 implants to increase biocompatibility (e.g. nano-hydroxyapatite) or to prevent infection 20 21 (e.g. nano-silver), or embedded nanomaterials to strengthen biomaterials (e.g. carbon 22 nanotubes in a catheter wall). In all these cases, the potential exposure to the 23 nanomaterials should be considered. It is additionally recognised that wear and tear of 24 medical devices may result in the generation of nano-sized particles even when the 25 medical device itself does not contain nanomaterials.

26 Guidance is provided on physico-chemical characterisation of nanomaterials, the 27 determination of hazards associated with the use of nanomaterials, and risk assessment 28 for the use of nanomaterials in medical devices. The safety evaluation of the 29 nanomaterials used in medical devices is discussed in the context of the general 30 framework for biological evaluation of medical devices as described in the ISO 10993-31 1:2009 standard. Therefore, the risk assessment is performed taking into consideration 32 type of device, type of tissue contact, and the duration of contact, thus identifying the 33 specific exposure scenario.

34 This Guidance is aimed at providing information to help with safety evaluation and risk 35 assessment on the use of nanomaterials in medical devices that should be considered in conjunction with the ISO 10993-1:2009 standard. The Guidance highlights the need for 36 37 special considerations in relation to the safety evaluation of nanomaterials, in view of the 38 possible distinct properties, interactions, and/or effects that may differ from conventional forms of the same materials. 39

- 40 For the risk evaluation of the use of nanomaterials in medical devices, a phased approach 41 is recommended based on potential release and characteristics of the nanomaterials.
- 42 Keywords:
- 43 Medical devices, nanomaterials, risk evaluation, SCENIHR, Scientific Committee on 44 Emerging and Newly Identified Health Risks.

Health Effects of Nanomaterials Used in Medical Devices, July 2014

- 45 Opinion to be cited as: SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks), Preliminary Opinion on the Guidance on the Determination of Potential
- 47 48

TABLE OF CONTENTS

2	
3	ACKNOWLEDGMENTS
4	ABSTRACT
5	1. BACKGROUND
6	2. TERMS OF REFERENCE
7	3. GUIDANCE ON SAFETY EVALUATION OF NANOMATERIALS USED IN MEDICAL DEVICES
8	
9	3.1. Introduction
10	3.2. Methodology
11	3.3. Characterisation of nanomaterials used in medical devices
12	3.3.1. Physicochemical characterisation of nanomaterials
13	3.3.2. Methods for characterisation
14	3.4. Uses of nanomaterials in medical devices
15	3.5. Exposure to nanomaterials from medical devices
16	3.5.1. Release of nanomaterials from medical devices
17	3.5.2. Exposure of patients to nanomaterials released from medical devices
18 19	3.5.3. Exposure of professional users to nanomaterials released from medical devices
20	3.5.4. Estimation of exposure for risk assessment
21	3.6. Toxicokinetics
22	3.6.1. Introduction
23	3.6.2. Methods to evaluate toxicokinetics of nanomaterials
24	3.6.3. Toxicokinetics of nanomaterials present in non-invasive medical devices 27
25	3.6.4. Invasive medical devices
26	3.6.5. Conclusions on toxicokinetics of nanomaterials
27	3.7. Toxicological evaluation
28	3.7.1 Introduction 29
29	3.7.2 Potential nitfalls in toxicity testing of nanomaterials 30
30	3.7.3 Toxicity testing methods
31	3.8. Evaluation of nanomaterials used in medical devices
32	3.8.1. Non-invasive surface contacting medical devices
33	3.8.2. Invasive surface contacting medical devices
34	3.8.3. Invasive external communicating medical devices
35	3.8.4. Invasive implantable medical devices
36	3.8.5. Specific types of medical devices

1	3.8.6. Conclusions	43
2	4. RISK EVALUATION	44
3	5. SUMMARY AND CONCLUSIONS	48
4	6. MINORITY OPINION	49
5	7. ABBREVIATIONS AND GLOSSARY OF TERMS	50
6	8. REFERENCES	53
7	Annex	65
8		
9		

1 **1. BACKGROUND**

2

3 Today, a more widespread application of nanotechnologies and nanomaterials is 4 imminent or already occurring in many areas, including health care. For nanomedicine, 5 the three largest areas of application are diagnostics, drug delivery and regenerative 6 medicine (ETP Nanomedicine 2009). In addition, there are applications in surgery and 7 thermotherapy (Vauthier et al. 2011).

- 8 In the field of medical devices, the following cases of alleged use of nanomaterials have9 been identified by Notified Bodies:
- 10 Carbon nanotubes in bone cements;
- 11 Nanopaste hydroyapatite powder for bone void filling;
- 12 Polymer setting material with nanoparticles in dental cements;
- 13 Polycrystalline nanoceramics in dental restorative materials;
- 14 Nanosilver or other nanomaterials used as coatings on implants and catheters;
- Nanosilver used as an antibacterial agent, for example in wound dressings (see also Wijnhoven et al. 2009).

Furthermore, there are reports on iron-oxide nanoparticles injected into tumour cells to be heated-up by radiation or an external magnetic field¹. This type of use has not yet been clearly attributed to the legislation on medicines or to the legislation on medical devices. On one hand, the immediate effect is mechanical as the tumour cells burst. On the other hand, one might regard the legislation on medicines applicable as the burst cells are metabolised at a later time.

23 Although the general risk assessment requirements applicable for materials used in 24 medical devices and previous scientific opinions on risk assessment of nanomaterials (see 25 e.g. SCENIHR 2006, 2007 and 2009) are useful when assessing nanomaterials for medical applications, there is a need for further clarification in the risk assessment of 26 27 such products. Especially for medical devices, there is such a need in view of the 28 decentralised regulatory system ("New Approach"). The risk assessor, be it the manufacturer, the Notified Body or the authority, should be aware of the specific 29 30 characteristics of nanomaterials before conducting a risk assessment of the application of 31 nanomaterials in a medical technology.

32 The European Commission has published two proposals for revision of the medical devices legislation: a Proposal on medical devices (COM(2012)542) and a Proposal on in 33 34 vitro diagnostic medical devices (COM(2012)541). These proposals include a definition of 35 nanomaterial taken from Commission Recommendation 2011/969/EU on the definition of nanomaterial and provisions on the risk classification, the labeling and the instructions 36 for use of medical devices containing nanomaterial. In addition, the general safety and 37 38 performance requirements now contain a specific requirement to design and manufacture 39 medical devices in such a way as to reduce to a minimum the risks linked to the size and the properties of particles used. Special care shall be applied when devices contain or 40 consist of nanomaterial that can be released into the patient's or user's body. The risk 41 classification influences the stringency of the applicable conformity assessment 42 43 procedure. 44

¹ See as an example for the latter the product description of MagForce at: <u>http://www.magforce.de/en/home.html</u>

1 2. TERMS OF REFERENCE

2

In light of the expected increase in the application of nanotechnologies to medical devices, the SCENIHR is requested to provide a guidance on the risk assessment of medical devices containing nanomaterials. This guidance should enable the classification of different categories of medical devices containing nanomaterials according to their level of risk.

- 8 This guidance shall take into account different categories of medical devices such as:
- 9 a. Non-invasive medical devices, e.g. devices coming into contact with the 10 intact skin,
- 11 b. Invasive devices (surgical or not), e.g.:
- 12 wound care materials,
- 13 implantable medical devices,
- 14 dental and bone fillings and cements,
- 15 injectable nanomaterials.

In this assessment, where relevant, the SCENIHR is invited to differentiate between free,fixed, and embedded nanomaterials.

- 18 The guidance should also differentiate the cases where the nanomaterial can be released
- into the patient's or user's body and the cases where the nanomaterial is deliberately intended to be released into the human body.
- 21
- 22 Deadline: December 2013
- 23 Supporting documents:

Afssaps (Agence française de sécurité sanitaire des produits de santé), Biological assessment of medical devices containing nanomaterials – Scientific Report (19.8.2011).²

ETP Nanomedicine (2009). Roadmaps in nanomedicine towards 2020. Downloadable from
 <u>http://www.etp-nanomedicine.eu/public/press-documents/publications/etpn-publications</u>

Mercanzini, S.T. Reddy, D. Velluto, Ph. Colin, A. Maillard, J.-C. Bensadoun, J.A. Hubbell,
Ph. Renaud, Controlled release nanoparticle-embedded coatings reduce the tissue
reaction to neuroprostheses, J. Control. Release 145 (2010) 196–202.

31 SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks), Risk 32 assessment of products of nanotechnologies, 19 January 2009.

33 SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks), The 34 appropriateness of the risk assessment methodology in accordance with the Technical 35 Guidance Documents for new and existing substances for assessing the risks of 36 nanomaterials, 21-22 June 2007.

² <u>http://www.afssaps.fr/Activites/Surveillance-du-marche-des-dispositifs-medicaux-et-dispositifs-medicaux-de-diagnostic-in-vitro-DM-DMDIV/Dispositifs-medicaux-Operations-d-evaluation-et-de-controle-du-marche/Dispositifs-medicaux-Operations-d-evaluation-et-de-controle/Evaluation-biologique-des-dispositifs-medicaux-contenant-des-nanomateriaux</u>

- 1 SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks). The 2 appropriateness of existing methodologies to assess the potential risks associated with 3 engineered and adventitious products of nanotechnologies, 10 March 2006.
- Skotland T, Iversen T-G, Sandvig K. New metal based nanoparticles for intravenous use:
 requirements for clinical success with focus onmedical imaging. Nanomedicine:
 Nanotechnology, Biology and Medicine 6, 730-737, 2010
- 7 Thalhammer et al. Biomaterials 31, 2097-2104, 2010 The use of nanodiamond 8 monolayer coatings to promote the formation of functional neuronal networks
- 9 Van Der Zande M, Walboomers, Brannvall M, Olalde B, Jurado MJ, Alava JI, Jansen JA.
- 10 Genetic profiling of osteoblast like cells cultured on a novel bone reconstructive material 11 consisting of poly-L-lactide, carbon nanotubes, and microhydroxyapatite in the presence 12 of bone morphogenic protein-2. Acta Biomater. 6, 4352-4360, 2010.
- Vauthier C, Tsapis N, Couvreur P. Nanoparticles: heating tumors to death? Nanomedicine2011, 6(1): 99-109.
- 15 Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW,
- 16 Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden
- 17 M, Sips AJAM, and Geertsma RE. Nano-silver A review of available data and knowledge
- 18 gaps in human and environmental risk assessment. Nanotoxicology 2009, 3(2):109-138.

1 3. GUIDANCE ON SAFETY EVALUATION OF NANOMATERIALS USED IN 2 MEDICAL DEVICES

3

3.1. Introduction

4 5

Nanomedicine is one of the most promising fields of application of nanotechnologies. It
uses new physical, chemical and biological properties related to nanoscale structures in
medicinal products and medical devices. Those properties provide opportunities but may
also be associated with risks.

10 This Guidance focuses specifically on medical devices. The directive 93/42/EEC as 11 amended by Directive 2007/47/EC defines a medical device as "any instrument, 12 apparatus, appliance, software, material or other article, whether used alone or in 13 combination, including the software intended by its manufacturer to be used specifically 14 for diagnostic and/or therapeutic purposes, and necessary for its proper application, 15 intended by the manufacturer to be used for human beings for the purpose of:

16 - diagnosis, prevention, monitoring, treatment or alleviation of disease,

17 - diagnosis, monitoring, treatment, alleviation of or compensation for an injury or18 handicap,

- 19 investigation, replacement or modification of the anatomy or of a physiological process,
- 20 control of conception,

and which does not achieve its principal intended action in or on the human body by pharmacological, immunological or metabolic means, but which may be assisted in its function by such means."

This definition is slightly amended in the proposal for a new Medical Device Regulation currently (2014) under negotiations (EC 2012). The proposed changes in the definition do not impact this Guidance.

27 The proposal for a new Medical Device Regulation includes a definition of nanomaterials 28 and provisions on the risk classification, the labeling and the instructions for use of 29 medical devices containing a nanomaterial. In addition, the general safety and 30 performance requirements in the proposal contain a specific requirement to design and 31 manufacture medical devices to minimize the risks linked to the size and the properties 32 of particles used, whereby special care shall be applied when devices contain or consist 33 of a nanomaterial that can be released into the patient's or user's body. The proposal 34 designates medical devices containing nanomaterials in the highest risk class (class III), 35 because of the uncertainties still associated with the potential risks of nanomaterials.

36 The use of nanomaterials in medical devices varies considerably. Examples are the use of 37 free nanomaterials as a type of medical device itself and administered to the patient as 38 such (e.g. iron oxide or gold nanomaterials for heat therapy against cancer), free 39 nanomaterials in a paste-like formulation (e.g. dental filling composites), free 40 nanomaterials added to a medical device (e.g nanosilver as antibacterial agent in wound dressings), fixed nanomaterials forming a coating on implants to increase 41 42 biocompatibility (e.g. nano-hydroxyapatite) or to prevent infection (e.g. nano-silver), or 43 embedded nanomaterials to strengthen biomaterials (e.g. carbon nanotubes in a catheter 44 wall). In addition, nanomaterials may be generated as wear nanoparticles from 45 orthopedic implants (Gill et al., 2012).

In the harmonised European standard ISO 10993-1 "Biological evaluation of medical devices, Part 1, Evaluation and testing within a risk management process", general considerations are included on how to perform the biological safety evaluation of medical devices depending on the application and use of a medical device. The following aspects are considered:

 category of device: surface device, external communicating device, implant device,

3

4

- location of tissue contact: skin, mucosal membrane, breached or compromised surface, blood, tissue, bone, dentin,
- contact time: defined as, limited ≤24 hours, prolonged > 24 hours to 30 days,
 permanent >30 days.

Depending on the use of the medical device, a range of tests has to be considered for the
biological safety evaluation (ISO 10993-1:2009). Subsequent parts of the ISO 10993
series describe more specific aspects and test methods. A guidance on nanomaterials is
currently under development (ISO/TR 10993-22 Biological evaluation of medical devices
Part 22: Guidance on nanomaterials).

12 The nano-related risk of medical devices containing nanomaterials is mainly associated 13 with the possibility of the release of free nanoparticles from the device, and their 14 potential toxic effects. However, toxic effects of fixed nanomaterials due to their chemical 15 composition and/or enhanced reactivity should be included. For this purpose, a detailed 16 characterisation and identification of the nanomaterials is essential.

17 Although much knowledge has been gained, the safety evaluation and risk assessment of 18 nanomaterials differ from those pertaining to conventional substances and still pose substantial challenges (SCENIHR 2006, 2007). This Guidance provides information on 19 20 how to perform risk assessment of medical devices containing nanomaterials. This 21 Guidance does not address the risk assessment of particular individual medical devices 22 containing nanomaterials. This should be performed on a case-by-case basis, for each 23 specific medical device containing a nanomaterial. In this context, it is important to 24 recognise that extrapolation from one nanomaterial to another is not possible. For 25 example, nanosilver has intrinsic properties that differ from gold nanoparticles. Additionally, the properties of 20 nm nanosilver differ from those of 100 nm nanosilver 26 27 particles (Park et al., 2011).

This Guidance is limited to the use of nanomaterials in medical devices and the risks for patients treated with medical devices containing nanomaterials, and users of these devices, i.e. health care professionals. In addition, it does not address:

- the broader topic of application of nanotechnologies in medical devices including
 for example, nano-electronics and lab-on-a-chip technologies. Nanotechnologies
 are enabling technologies with very broad application. Importantly, there are
 great differences in risk profile between applications using e.g. nanoelectronics –
 even if they are applied in implants and applications using nanomaterials.
- *in vitro* diagnostic (IVD) medical devices. Due to the nature of these products,
 exposure to nanomaterials from IVDs is highly unlikely.
- medical imaging technologies using contrast agents. While medical imaging
 equipment is classified as medical devices, contrast agents, which may include or
 consist of nanomaterials, are medicinal products.
- occupational and environmental risks during the production of nanomaterials. In
 addition, occupational and environmental risks in the manufacturing and disposal
 of a medical device containing nanomaterials are not included in this Guidance.

44 Medical devices not containing nanomaterials can generate nanoparticles as a result of 45 wear-and-tear. The approaches indicated in this Guidance may also be applicable for 46 such wear-and-tear generated nanoparticles.

The Guidance addresses the use of nanomaterials as defined in the recommendation of
the European Commission of October 2011 (Commission Recommendation 2011/696/EU)
(EC 2011), which is also used in the proposed regulation on Medical Devices. Chapter I
Scope and Definitions of the proposed Regulation on Medical devices contains Article 2
(15) defining a nanomaterial as follows:

- 1 "nanomaterial' means a natural, incidental or manufactured material containing particles,
- 2 in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or
- more of the particles in the number size distribution, one or more external dimensions is
 in the size range 1-100 nm.
- 5 Fullerenes, graphene flakes and single-wall carbon nanotubes with one or more external
 6 dimensions below 1 nm shall be considered as nanomaterials.
- 7 For the purposes of the definition of nanomaterial, 'particle', 'agglomerate' and
 8 'aggregate' are defined as follows:
- 9 'particle' means a minute piece of matter with defined physical boundaries;
- 'agglomerate' means a collection of weakly bound particles or aggregates where the
 resulting external surface area is similar to the sum of the surface areas of the individual
 components;
- 13 'aggregate' means a particle comprising of strongly bound or fused particles".

Although this Guidance specifically addresses the use of nanomaterials in medical devices and the generation of nano-sized wear and tear particles, this Guidance may also be applicable for the evaluation of medical devices containing or generating particles, which are not covered by the above definition of nanomaterial (see figure 1). In addition, by analogy, parts of this Guidance may also be useful for the evaluation of nanomaterials when used in medicinal products including tissue engineered medical products."

- 1
- 2

3 Figure 1: Schematic outline for safety assessment of nanomaterials used in medical 4 devices (the figure is an adapted version of the Fig.13 in the SCCS opinion on 5 Nanomaterials in Cosmetics)

- 6
- -
- 7

1

3.2. Methodology

2

3 To prepare this Guidance, SCENIHR reviewed recent scientific evidence to identify the 4 state-of-the-art approaches to perform the safety evaluation and risk assessment of the 5 use of nanomaterials in medical devices.

6 The SCENIHR has considered evidence derived from a wide variety of sources, including 7 peer-reviewed scientific and medical literature and published reports of institutional, 8 professional, governmental and non-governmental organisations. In common with the 9 usual practice of SCENIHR Working Groups, no reliance was made on unpublished work 10 or publicly available opinions that were not scientifically based (SCENIHR 2012).

- 11
- 12

3.3. Characterisation of nanomaterials used in medical devices

13

Material characterisation of medical devices regarding chemical, physical, morphological
and topographical characteristics is defined in ISO 10993-18: 2005, and ISO 10993-19:
2006.

Nanomaterials exhibit unique properties dependent on their size, shape and surface morphology, which are frequently time-dependent. That is why nanomaterials need characterisation and identification at all stages of design, development, and final production of medical devices containing nanomaterials (SCENIHR 2010, Afssaps 2011, EFSA 2011, SCCS 2012). This information is also essential for risk assessment, both for the identification of the chemical species under evaluation and for exposure identification.

- 23
- 24

3.3.1. Physicochemical characterisation of nanomaterials

25

The first step in assessing the risks posed by medical devices containing nanomaterials is to chemically identify and characterise the nanomaterials. It is essential to provide evidence that the characterisation data relate to the same nanomaterial that is used in the final product. If the data relate to a different nanomaterial, or a different form of the same nanomaterial, justification should be provided to show that there is sufficient physicochemical similarity between the nanomaterials to consider the data for risk assessment.

33 The most important parameters of the nanomaterials intended for use in medical devices 34 are presented in Table 1 together with suitable characterisation and measurement 35 methods. Importantly, nanomaterials may change their surface chemistry during processing, e.g. by acquiring new or additional surface molecules that may act like 36 coatings. Especially in biological test systems, various proteins are known to adhere to 37 38 the nanomaterial forming the so-called "protein corona". (Maiorano et al., 2010, Lesniak 39 et al., 2012). The protein corona is not static, the composition of the proteins adhering to 40 the surface on the nanomaterial changes during contact. In addition, ISO/TR 13014:2012 41 provides information and guidance on the characterisation of nanomaterials for 42 toxicological screening.

In view of these potential surface changes, it is important that the physicochemical status of a nanomaterial is determined at different stages of testing and/or usage, (EFSA 2011, SCCS 2012). As the list in the Table 1 is not exhaustive, the manufacturers should be ready to provide additional information on other parameters, if necessary, for the risk assessment.

1 2 3

Table 1: Parameters for characterisation and identification of nanomaterials (NM) intended for use in medical devices.

Parameter	Description	Methods*	
Chemical composition/ identity	Information on chemical composition of the NM – including purity, nature of any impurities, coatings or surface moieties, encapsulating materials, processing chemicals, dispersing agents and/or other formulants e.g. stabilizers; information on	MS, AAS, ICP-MS, FTIR, NMR UVVis, HPLC, GC/LC-MS	
	structural formula(e)/ molecular structure(s) of the constituents of nanomaterial must be provided.	Raman spectroscopy	
Particle size (Primary/Secondary)	Information on primary particle size, size range and number size distribution (indicating batch to batch variation – if any). The same information would be needed for secondary particles (e.g. agglomerates and aggregates) if present. At least two methods, one being electron microscopy, should be used.	FFF, HDC, HPLC, AUC, CLS disc centrifugation, TEM, SEM, STEM, AFM, DLS, DMA	
Physical form and morphology	Information on the physical form and crystalline phase/shape. The information should indicate whether the NM is present in a particle-, spherical-, flake-, tube-, rod-, or fibre- shape, the aspect ratio, crystal or amorphous form, and whether it is in free particulate form or in an agglomerated/ aggregated state as well as whether the preparation is in the form of a powder, solution, suspension or dispersion.	AFM, TEM, SEM, STEM, NMR, XRD	
Particle and mass concentration	Information on concentration in terms of particle number and particle mass per volume when in dispersion and per mass when as dry powder.	A wide range of analytical methods, including UV-Vis, HPLC, GC/LC-MS, AAS, ICP-MS	
Specific surface area	Information on specific surface area of the NM. At the moment this is only applicable for dry powders.		
Surface chemistry	Information on NM surface – including any chemical/ biochemical modifications that could modify the surface reactivity, or add a new functionality.	LDE, SPM, XPS, MS, RS, FTIR, NMR, AUC (for surface composition), GE, SPM, LDE, Nano SIMS, SERS	
Surface charge	Information on zeta potential of the NM.	PALS (for zeta potential)	
Redox potential	Information on redox potential, especially for inorganic NMs. Conditions under which redox potential was measured need to be documented.	Potentiometric methods, X-ray absorption spectroscopy	
Solubility and partition properties ^a	Information on solubility of the NM in relevant solvents and their partitioning between aqueous and organic phase (e.g. as log K_{ow} if appropriate).	Solubility/ dissolution rate in water and other solvents	
рН	pH of aqueous suspension.	pH in aqueous media	
Viscosity	Information on viscosity of liquid dispersions.	OECD 114	
Density and pore density	For granular materials, information on density/porosity of unformulated NM and pore density.	DIN ISO 697, EN/ISO 60	
Dustiness	Information on dustiness of dry powder products – such as cements and alginates.	EN 15051:2006, DIN 33897- 2.	
Chemical reactivity/ catalytic activity ^b	Information on relevant chemical reactivity or catalytic activity of the NM and of any surface coating of the NM.	chemical, biochemical and/or catalysed reactions	
Photocatalytic activity	Information on photocatalytic activity of relevant materials used (e.g. coatings, dental materials).	TEM, UV, X-ray topography	

4 * See section 6 Abbreviations and glossary of terms.

a) Dispersion, solution, dissolved: An insoluble NM introduced to a liquid forms a
'dispersion', where the liquid and the NM coexist. In a true solution, the NM is dissolved
(and thus, not present) (see OECD 2012 (ENV/JM/MONO(2012)40).

8 b) If a NM has catalytic properties, it may catalyse a redox or other reaction that may

perpetuate resulting in a much larger biological response even with small amounts of the
catalytically active NM. Thus, compared to a conventional biochemical reaction that uses
up the substrate, NM reaction centres may perpetuate catalytic reactions.

- 4
- 5 6

3.3.2. Methods for characterisation

7 There are internationally accepted standards for identification and measurements of 8 materials (substances) in their bulk form. Some of these methods can also be used (or 9 adapted) for detection and characterisation of nanomaterials, as shown in the Table 1.

10 In the last decades, various techniques for measuring at the nanoscale were developed, most of them based on some physical phenomena observed on particle interactions or 11 forces at the nanoscale. Some of the most commonly used techniques are Atomic Force 12 13 Microscopy (AFM), X-Ray Diffraction, Small-Angle X-ray Scattering (SAXS), dynamic light scattering (DLS), and various electron microscopy techniques (TEM, SEM, STEM, 14 15 HRTEM). These methods for characterisation were considered in detail in SCENIHR 2010, and additional details were provided in the recent ICCR WG report (ICCR 2011), EFSA 16 17 Guidance (EFSA 2011), and SCCS Guidance (SCCS 2012). The most important conclusion 18 is that sizing a particulate material needs to be done using different techniques 19 depending on whether the nanoparticles occur as a powder, are dispersed in a liquid, are 20 coated or are embedded in a solid material. Not all methods measure the same size, e.g. 21 TEM and AFM measure the size without any organic coatings, while the size determined by DLS includes the organic coating in the measurement. Each method has its specific 22 23 limitations and optimal size range. Nanometrology can be defined as the science of 24 measurements at the nanoscale and provides calibration measurements (Proykova et al 25 2011).

Relevant methods for nanomaterial characterisation can also include size separation and extraction (e.g. ultra- centrifugation, FFF, HDC), and chemical analysis/ detection by spectroscopic or mass spectrometric techniques (e.g. ICP-MS, UV spectroscopy, AAS), surface area determination (BET), and their different variants and combinations. Methods for *in situ* imaging of nanomaterials, e.g. magnetic particle imaging (MPI) and positron emission tomography (PET), are currently under development.

32 Similarly, antibody binding protein, and enzyme based methods are also under 33 development for determination of organic or coated-inorganic nanomaterials. Some 34 nanomaterials fall in the class of *metamaterials* for which it is not the composition, but 35 the structure, which determines their physico-chemical properties (Engheta and 36 Ziokowski. 2006).

37 Electron microscopy is perhaps the most generally applicable method used for 38 nanomaterial characterisation. Size and morphology are readily characterised in the Field 39 Emission Scanning Electron Microscopy (FESEM), FEG-SEM, TEM, STEM and FIB/SEM (see 40 Table 2). HRTEM allows structural information on particles and atomic clusters to sub-0.2 nm resolution, while EELS and EDX analysis in the STEM allow the chemical analysis of 41 42 particles down to nanometre diameters. Combining several methods makes it possible to 43 simultaneously investigate particle size, shape, structure, composition, and surface 44 properties.

- 45
- 46

1 Table 2: Examples of methods for size determination

2

Method	Limitations in range measurements	Phase (liquid, solid, gas) and sensitivity	Particle Distribution
SEM (STEM)	Up to 50-100 nm	Res. 0.4 nm	no
TEM	Few nm	Res. 0.05 nm	yes
STM		Res. 0.01 nm to 0.1 nm	
HRTEM	Below 0.2 nm		yes
AFM	Scanned area is limited	Atomic resolution but sensitivity decreases in time	
SAXS	5-25 nm		
DLS & NTA	(1-2000 nm) & (10-15000 nm)		yes

3 4

More information about various characterisation techniques is provided in the Annex.

5 Each method for size determination, as indicated in Table 2 has its specific limitations. Pitfalls in size measuring techniques are indicated in Linsinger et al., (2012). An excellent 6 7 illustration of both the target and the AFM tip change in the course of measurement phenomenon 8 based quantum available on is at 9 http://www.loc.ethz.ch/research/grpYamakoshi EN.

10 However, characterisation and application of nanomaterials in medical devices is not an 11 easy task. For example, the time required to characterise nanomedicines from their development through the in vivo application phase is approximately one year. The 12 13 success rate of Phase 2 human trials (efficacy trials) is 18% in 2008-2010. 14 (Nanotechnology Characterization Laboratory (NCL), US http://ncl.cancer.gov/). During 15 the workshop "Lessons learned" held in 2011, the NCL presented negative results, "What doesn't work", (Crist et al., 2013). Progress in development and characterisation of 16 17 nanomaterials used in medicine was the focus of the European CLINAM & ETPN Summit, 18 June 23-26, 2013 (Löffler 2013).

No single method was found that could cover the size range from lower than 1 nm to above 100 nm for all materials. This is one of the reasons that both EFSA and SCCS, in their guidance, require at least two methods for size determination, one of them being an electron microscopy method (EFSA, 2011; SCCS, 2012). Following this principle, the same is considered to apply to the characterisation of nanomaterials used in medical devices.

- 25
- 26

3.4. Uses of nanomaterials in medical devices

27

The applications mentioned below are examples of current and possible future use of nanomaterials in medical devices, excluding the larger range of nanotechnologies in medical devices including, for example, nano-electronics and lab-on-a-chip technologies. The following are examples of applications of nanomaterials in medical devices that are currently available (Roszek et al., 2005; Geertsma et al., 2009, ETP 2009, Afssaps 2011).

- 34
- 35

- 1 Examples of devices in current clinical practice:
- 2

3 Non-invasive surface contacting medical devices

4 These are medical devices which come into contact only with the intact skin. Examples 5 are operating gowns and textile to cover patients in the operating theatre furnished with 6 antibacterial properties, using silver nanoparticles.

7 Invasive surface contacting medical devices

8 These are medical devices which come into contact with breached or otherwise 9 compromised skin. Examples are wound treatment products (wound dressings) 10 containing nano-sized silver particles or metal oxide particles which are used for 11 improved antibacterial and anti-fungal activity (Vasilev et al., 2009, Chaloupka et al., 12 2010).

13 **Invasive external communicating medical devices**

These are medical devices which come into contact with the blood path, either indirectly
or with circulating blood, and devices in contact with tissue/bone/dentin. Examples
include:

- catheters with a nanosilver coating for bladder drainage, haemodialysis and local
 administering of anaesthesia
- polymer-based dental composite filler materials and dental cements containing nanoparticles (Ferracane 2011).
- surgical and dental instruments with nanostructures used to enhance the cutting
 behaviour and wear resistance of cutting instruments, e.g. scalpels, needles,
 catheters, burs for cutting bone or teeth
- instruments with nanostructures used to create non-sticky surfaces to facilitate
 handling and placement of materials. "Nano-diamond" coatings can be used for
 this purpose (Dearnaley and Arps 2005).

27 **Invasive implantable medical devices**

These are medical devices for introduction into the body in toto, or used to replace the surface of the eye or an epithelial surface by surgical intervention and they remain in place after the procedure. Examples include:

- Carbon nanotubes in bone cements for fixation of implanted prostheses (Van Der
 Zande et al., 2010)
- Bone fillers with hydroxyapatite and tricalcium phosphate nanoparticles which
 facilitate rapid integration with the bone of the patient
- Endovascular stents and stent grafts
- Implants for joint replacement (arthroplasties) and implants for fracture repair
- 37 Sutures (Ho et al., 2013)
- Surface coatings: The surface of implants may be modified with the aid of nanotechnologies to enable them to integrate better in the body (improved biocompatibility) (Mercanzini et al., 2010, Thalhammer et al., 2010). In addition, coatings may be used for their antibacterial activity
- 42 Joint prosthetics (hip, knee) with nanohydroxyapatite coating
- Coronary stents with a diamond-like nano composite coating made of ultra-thin polymer

1 Specific types of medical devices

A special category of nano medical devices are the injectable medical devices. Examples include iron-oxide nanoparticles injected into tumour cells which are then heated-up by radiation or an external magnetic field (Vauthier et al., 2011; Dutz and Hergt 2013; Torres-Lugo and Rinaldi 2013). A more detailed description of one type of this product can be found at: <u>http://www.magforce.de/en/home.html</u> (Magforce Ag, Berlin, Germany). Nanoparticles are additionally being investigated for use in diagnostic imaging (Skotland et al., 2010).

9 Various manufacturers are developing more products along the lines of the examples
10 mentioned above. Examples of applications that are under development are presented
11 below.

12

14

13 **Examples of applications under development:**

15 Non-invasive surface contacting medical devices

16 No examples identified.

17 Invasive surface contacting medical devices

18 Silver nanocoatings for various catheters, contact lenses, and endotracheal tubes

19 Invasive external communicating medical devices

- Catheters strengthened with carbon nanotubes for minimally invasive surgery
- Electrodes with laminin nanocoating through layer-on-layer self-assembly to
 improve electrode-tissue interface
- Surface modification of neural micro-electrodes with polymer nanotubes for a low
 impedance electrode-tissue interface
- Nanoporous micro-electrodes for a brain-machine interface

26 Invasive implantable medical devices

- Bone cement/ bone replacement products containing nanosilver as an antimicrobial additive
- Coronary stents with nanocoatings of aluminium oxide, glycoproteins,
 hydroxyaptite, platinum or titanium dioxide (Puranik et al., 2013)
- Silver nanocoatings for various orthopaedic implants and mesh implants
- Orthopaedic implants with nanocrystalline metallo-ceramic coatings
- Modification of the surface roughness of an implant which influences the function
 of bone-forming and bone-degenerating cells
- Carrier material ('scaffold') for *tissue engineering products* with a nanoporous structure and surface properties which facilitate the growth of living cells and enable the transport of nutrients, signalling molecules, and waste products The purpose of these types of products is to replace, repair or regenerate tissues and ultimately, even organs
- 40

41 Specific types of medical devices

- More injectable nanomaterials for introduction into tumours which may then be radiated externally, including:
- 44 o Heat therapy with super paramagnetic iron oxide nanoparticles

- 1
- Heat ablation with gold nanoparticles
- 2 o Light therapy
 - Boron neutron capture therapy
- Theranostics (therapy combined with diagnostics), i.e. combination of diagnostics
 and heat therapy with the aid of super paramagnetic iron oxide nanoparticles
- 6

3

- 7
- 8 9

3.5. Exposure to nanomaterials from medical devices

Humans may be exposed to nanomaterials from medical devices through various routes.
Depending on the relevant exposure route based on the use of a specific medical device,
nanomaterials will encounter various barriers before they are taken up by the body.

13 Two types of people may be exposed: patients and users (health care professionals), although the potential of exposure of patients and/or users will differ depending on the 14 15 particular device and the way it is used. In general, the highest potential for exposure is associated with devices that consist of "free" nanomaterials or the release/loosening of 16 17 nanomaterials present as coatings on the surface of medical devices. In addition, 18 exposure to nanomaterials from medical devices may also result from degradation or 19 wear processes, when nanomaterials are fixed on the surface (e.g. as coating on 20 implants) or are embedded within the material of the medical device.

A great variety of nanomaterials is used in nanomedicine, including structures based on lipids, proteins, DNA/RNA or other naturally occurring materials and substances. Furthermore, many different nanomaterials based on polymers, both degradable and non-degradable are applied. The various known forms of carbon like carbon nanotubes (CNT), diamond, carbon black, carbonfibres, and carbonwires are also frequently used. Furthermore, many different sorts of metals and metal oxides are used, as well as silica, quantum dots and a number of specific types that do not fit easily in a larger category.

The intended use of therapeutic devices, sensors/diagnostics for *in vivo* use, regenerative medicine, and implants. inherently implies high exposure potential for patients. For professional users, exposure potential is generally low. When the nanomaterial is used in an unbound (free) state, it can potentially spread throughout the body.

In the ISO 10993 series, the following standards are dealing with characterisation of medical devices and their degradation products. Although nanomaterials are not addressed in these standards, they provide information on the general characterisation of the various components used in medical devices.

- ISO 10993-9:2009. Biological evaluation of medical devices Part 9: Framework for
 identification and quantification of potential degradation products.
- ISO 10993-13:2010. Biological evaluation of medical devices Part 13: Identification
 and quantification of degradation products from polymeric medical devices.
- ISO 10993-14:2001. Biological evaluation of medical devices Part 14: Identification
 and quantification of degradation products from ceramics.
- ISO 10993-15:2000. Biological evaluation of medical devices Part 15: Identification
 and quantification of degradation products from metals and alloys.
- ISO 10993-18:2005. Biological evaluation of medical devices Part 18: Chemical
 characterization of materials.

46 ISO 10993-19:2006. Biological evaluation of medical devices – Part 19: Physico-47 chemical, morphological and topographical characterisation of materials.

- 1 2 3 In general, the highest potential for release of nanomaterials from medical devices is 4 associated with devices
- 5 6

7

- in which the nanomaterial is intended to be released,
- composed of free nanomaterials (e.g. ironoxide nanoparticles for heat therapy) and/or

3.5.1. Release of nanomaterials from medical devices

- 8 containing free nanomaterials (e.g. nanosilver as used in wound dressing, 9 nanomaterials present in bone fillers). 10
- 11 The second possibility for release of nanomaterials from medical devices is associated 12 with release/loosening of nanomaterials present as coatings on medical devices. 13
- 14 The third possibility is associated with medical devices containing nanomaterials, which are released, through chemical breakdown or wear-and-tear processes due to 15 16 (bio)degradation. 17
- 18 Chemical breakdown occurs as nanomaterials are released from a medical device with 19 a degradable matrix embedding a nano-sized component or released from the surface 20 when applied as a coating. During the degradation, a nano-sized component is released. In the second category, the material may be a composite in which nanoparticles are 21 22 released as the material is exposed to mechanical and chemical wear-and-tear.
- 23 Nanoscale particles may even be generated as a consequence of the degradation of medical devices that do not contain nanomaterials. Solid and porous bulk materials may 24 25 degrade due to hydrolysis or catalysis. Eventually, the degradation may lead to the production of nano-sized particles. For materials that intentionally or unintentionally 26 27 degrade upon tissue contact, particles will ultimately be formed as a result of mechanical 28 collapse, which may cause nanoparticles to be generated from either the bulk material or 29 nano-sized components.
- 30 Nanoparticles may be generated through abrasive wear or grinding of a material. An 31 example of this includes resin-based composites used in restorative and aesthetic 32 dentistry. These types of composites with nano-sized fillers of various sizes and shapes 33 have in recent years become increasingly popular due to superior aesthetic and 34 mechanical properties. Particles in the nano-size range have been detected in debris after 35 grinding or polishing dental composites on a laboratory surface as well as in the aerosol 36 after polishing of nano-composite restorations in the front teeth Van Landuyt et al., 37 2012, 2014; Kostoryz et al., 2007). Because there are no occupational exposure limits for nanoparticles, it is not possible to speculate on relative health-associated risks from 38 39 nanoparticles released when grinding or polishing dental composites. There is also a lack 40 of information to establish such limits.
- 41 Joint articulations using metal-on-metal as well as metal-on-polyethylene sliding surfaces produce wear particles most frequently during revision surgery (SCENIHR, 2014). For 42 43 metal-on-metal joints, metal debris particle size was less than 1 μ m for most (>90 %) of 44 the particles, while for metal-on-polyethylene joints, most particles were above 1 µm 45 (Lee et al., 1992). Notably, several reports on the distribution of particles show that the 46 largest number of particles was detected among the smallest analysed category, 47 indicating that nano-size particles are most likely to be present. A generic all-48 encompassing term "adverse reactions to metal debris" (ARMD), was introduced that 49 summarises the histopathology associated with metal-on-metal hip prostheses including 50 aseptic lymphocytic vasculitis associated lesions, lymphoid neogenesis, granulomatous 51 inflammation and metallosis (Natu et al., 2012).
- 52

1 2 3	3.5.2. Exposure of patients to nanomaterials released from medical devices
4	For patients, the following exposure routes may be applicable:
5	 inhalation exposure (e.g. related to intubation, dental procedures)
6	dermal exposure
7	• mucosal exposure (via various mucosal tissues, e.g. in the mouth, vagina/penis)
8	oral exposure
9 10 11 12	 parenteral exposure (introduced into the body by a means other than through the gastro-intestinal tract, e.g., by injection into the bloodstream (intravenous) or a muscle (intramuscular), surgical procedures using medical devices or from implanting devices in any tissue)
13	ocular exposure
14	
15	3.5.2.1 Non-invasive medical devices
16	
17 18 19	These are devices in contact with intact skin. Released nano-sized components have a low potential to penetrate through the skin (Labouta and Schneider 2013) (see section 3.6.3).
20 21	Note: Under the medical devices regulations, contact lenses worn on the surface of the eye are considered to be invasive medical devices.
22	
23 24	3.5.2.2 Invasive medical devices
25 26 27	All classes of invasive devices may potentially generate nano-particles. For invasive devices, the released nanoparticles have a direct port of entry in the body depending on the localisation of the device used.
28 29 30 31	Products consisting of free nanomaterials always lead to high potential for systemic exposure, i.e. to the entire body, regardless of the administration route (oral, dermal, parenteral or intravenous). Whether or not a high systemic exposure occurs depends on the actual use of the medical device and the route of exposure (i.e the location of the use

31 the actual use of the me32 of the medical device).

33 Nanomaterials in products used in surgery are generally embedded inside or coated on larger products. The duration of contact with the patient is relatively short. Local 34 35 exposure to the bound nanomaterials at the site of treatment will therefore be high in all 36 cases, whereas systemic exposure potential to free nanomaterials is likely to be very low. 37 Additionally, for implants, nanomaterials are usually embedded or fixed on the surface 38 and the duration of contact is long-term. Local exposure to fixed nanomaterials at the 39 site of treatment will therefore be high in all cases, whereas systemic exposure potential to free nanomaterials may be considered low, provided there is only slow generation of 40 41 wear particles. Exposure may also occur during the treatment procedures with dental 42 composite materials cured in situ, and with bone and tissue fillers containing 43 nanomaterials. In particular for dental fillings, exposure may also occur during polishing. 44 (Van Landuyt et al., 2014).

1 2	3.5.3. Exposure of professional users to nanomaterials released from medical devices
3 4 5 6 7	For professional users (e.g. dentists and dental technicians), the potential exposure is highest when free nanomaterials are present in the medical device, e.g. in certain dental composite materials and bone fillers. Exposure may occur especially during polishing of dental fillings (Van Landuyt et al., 2014).
8	For these professional users, the following exposure routes may be applicable:
9	 inhalation exposure (e.g. related to dental procedures)
10	dermal exposure
11	 mucosal exposure (via various mucosal tissues, e.g. in the mouth)
12	oral exposure
13	ocular exposure
14	
15 16	3.5.4. Estimation of exposure for risk assessment
17 18 19 20	Based on the potential exposure to nanomaterials in medical devices, an estimation can be made of the exposure using the exposure times and the exposure categories used in the risk assessment and risk management of medical devices as indicated in ISO 10993- 1:2009 (Table 3).
21 22	Three exposure categories of devices are considered based on the application site of a medical device:
23 24 25	 surface contacting device external communicating device implant device
20 27	The type of tissue contact considered in the risk accomment includes extension like
27 28	ckin
20	 mucosal membrane
30	 breached or compromised surface
31	 blood
32	– tissue
33	– bone
34	– dentin
35	
36	The contact time must also be considered:
37	 limited contact (≤24 hours)
38	 prolonged contact (> 24 hours to 30 days)
39	 permanent >30 days
40	

1 In addition to the potential (bio)degradable property of a material, the "quality" of the 2 material used to manufacture a medical device should be considered in terms of possible 3 wear and tear.

Importantly, measuring of the release of nanomaterials from a medical device may pose
analytical challenges. Currently, a robust methodology especially for the measurements
of low level release of nanomaterials is lacking. For metal and metal oxide nanomaterials,
elemental analysis may be used as a surrogate for nanoparticle release.

8 **Table 3: An estimation of potential external and internal exposure as starting** 9 **point for a risk evaluation for medical devices containing nanomaterials**

10

				Type of application of nanomaterials				
				Externa Fixed	Fixed	ernai exposure		
			Free	(coating)	(coating)	Embedded	Embedded	
		Duration		Weak	Strong	In	In non-	
Type of device	Type of contact	of		(physisorb)	(chemisorb)	degradable	degradable	
		contact		M/N	M/N		N/N	
		≤ 24 h	H/N		11/11	2/11		
	Intact skin	>24 h to 30 d	H/N	M/N	M/N	M/N	N/N	
		>30 d	H/N	M/N	M/N	H/N	N/N	
Surface		≤ 24 h	H/L	M/L	M/N	L/L	N/N	
device	Intact mucosal membrane	>24 h to 30 d	H/M	M/M	M/L	M/M	N/N	
		>30 d	H/M	M/M	M/L	H/M	N/N	
	Breached or	≤ 24 h	H/H	M/M	M/L	L/M	N/N	
	compromised	24 h to 30 d	H/H	M/M	M/L	M/M	N/N	
	surface	30 d	H/H	M/M	M/L	H/M	N/N	
	Blood path, indirect **	≤ 24 h	na	M/M	M/L	L/L	N/N	
		>24 h to 30 d	na	M/M	M/L	M/M	N/N	
		>30 d	na	M/M	M/L	H/M	N/N	
	J Tissue/bone/dentin	≤ 24 h	H/H	M/M	M/L	L/L	N/N	
External communicating		>24 h to 30 d	H/H	M/M	M/L	M/M	N/N	
device		>30 d	H/H	M/M	M/L	H/H	N/N	
	Circulating blood***	≤ 24 h	na	H/H	H/H	L/L	N/N	
		>24 h to 30 d	na	H/H	H/H	M/M	N/N	
		>30 d	na	H/H	H/H	H/H	N/N	
		≤ 24 h	H/H	H/H	H/L	L/L	N/N	
	Tissue/bone	>24 h to 30 d	H/H	H/H	H/L	M/M	N/N	
Implant		>30 d	H/H	H/H	H/L	H/H	N/N	
device		≤ 24 h	H/H	H/H	H/L	L/L	N/N	
	Blood	>24 h to 30 d	H/H	H/H	H/L	M/M	N/N	
		>30 d	H/H	H/H	H/L	H/H	N/N	

11

H=high, M=medium, L=low, N=negligible, na= not applicable

H/L means high potential contact and/or external exposure to the nanomaterial / lowpotential for internal systemic exposure of all organ systems

14 * the exposure will depend on the degradation time of the medical device

** contacting the blood path at one point. Examples of these types of devices are
solution administration sets, transfer sets and blood administration sets (ISO 109934:2002)

*** Examples of these types of devices are: intravascular catheters, extracorporeal
 oxygenating tubing and dialysers (ISO 10993-4:2002).

3

4

3.6. Toxicokinetics

5

3.6.1. Introduction

6

Toxicokinetic testing provides information on the fate and behaviour of the substances
under evaluation and insight in potential target organs and organ burden that may
ultimately result in toxicity.

10 The toxicokinetic properties of nanomaterials, like other substances, can be described by four processes: absorption, distribution, metabolism and excretion (ADME) the study of 11 12 which is essential for the safety evaluation of engineered nanomaterials. The nature of 13 nanomaterials may result in altered and specific toxicokinetics and tissue distribution when compared to non-nanoforms (EFSA 2011, SCCS 2012). For subgroups of certain 14 15 solid nanomaterials, it is doubtful whether metabolism (M) really occurs. Tissue 16 distribution, accumulation and elimination from tissues are considered more relevant 17 than blood plasma levels. It is particularly important to evaluate any nanomaterial 18 presence in organs shown to be typical distribution organs (and thus potential targets for 19 toxicity) and that have an increased capacity for uptake of particles (e.g. liver, spleen, 20 and lungs) (EFSA 2011). In addition, the kidney is an important organ, because of 21 possible excretion of the nanomaterials.

22 The route of entry is important, because it may affect the kinetics of nanomaterials/nanoparticles: For example, Au nanoparticles (1.4 nm) showed a higher 23 24 uptake in the kidney compared to the liver after intratracheal administration. In contrast, 25 the liver was the predominant target organ after intravenous administration, suggesting 26 the alteration of the nanoparticles during passage through the air/blood barrier in the 27 lung (Oberdörster 2010, Semmler-Behnke et al., 2008). Depending on the site of 28 application, further kinetics of a released nanomaterial may be affected by adherence of 29 molecules to the surface of a nanomaterial. In this respect, the formation of a serum 30 protein "corona" that is thought to enhance recognition and uptake by cells of the mononuclear phagocyte system (MPS) is well known (Lynch et al., 2009, Lynch and 31 Dawson 2008, Nel et al., 2009). The MPS cells are primarily monocytes and macrophages 32 present found in spleen, lymph nodes and bone marrow as well as Langerhans cells in 33 34 the skin, Kupffer cells in the liver and alveolar macrophages in the lung. There is a rapid 35 clearance of the nanoparticles from the blood mainly into the liver and spleen (De Jong et 36 al., 2008, Demoy et al., 1997, Gibaud et al., 1996, Lenaerts et al., 1984, Sadauskas et 37 al., 2007, Lipka et al., 2010, Lankveld et al., 2010, 2011).

Locally released nanoparticles in tissues may migrate or be transported into the systemic circulation. The primary transportation system is lymphatic, which allows for transportation of free particles and particles phagocytised by tissue macrophages and/or other inflammatory cells. Although these particles accumulate mainly in regional lymph nodes, depending on the primary localisation, and enter into the blood circulation, the nanoparticles may also accumulate in spleen and liver. Nanomaterials released from a medical device can translocate from their site of origin into the body.

The route of exposure to nanoparticles depends on the medical device. Potentially all routes of exposure are possible. Independent of the route of exposure for medical devices, the absorption and bioavailability of potentially released nanomaterials from a medical device, or the generation of nanoparticles via wear and tear (Polyzois et al., 2012), are the starting points for the evaluation of the toxicokinetics of nanomaterials.

- 50
- 51

3.6.2. Methods to evaluate toxicokinetics of nanomaterials

1 2

3 The design and performance of toxicokinetic studies for chemicals, degradation products 4 and leachable from medical devices is described in ISO 10993-16:2010. Although 5 degradation products are considered, nanoparticles are not mentioned. The OECD 417 6 test guideline describes the toxicokinetic studies necessary for chemical substances and 7 explicitly states that it is not intended for the toxicokinetic testing of nanomaterials. 8 Analogously, both the *in vivo* and *in vitro* OECD Guidelines (427 and 428, respectively) 9 for dermal penetration were developed for chemicals and not proven to be valid for 10 nanoparticles. Therefore, the use of such methodologies should be evaluated on a case-11 by-case basis.

12 For a dissolved chemical, the tissue uptake and release is generally dependent on the blood concentration (when excluding specific active transport, the first-pass effect in the 13 14 liver and highly bio accumulating chemicals in the adipose tissue) and an equilibrium between blood and organ concentration is generally obtained. This is because 15 16 nanoparticle uptake in organs occurs rapidly and a repeated administration results in an 17 increase of nanomaterials, predominantly in the liver and spleen after intravenous 18 administration (Lankveld et al., 2010). There is no equilibrium concentration between tissue and blood. Uptake in organs can occur independent of the blood concentration i.e. 19 20 even with a low blood concentration and high organ concentration, organ uptake can 21 occur. This results in persistence of nanomaterials in organs for long periods; silver could 22 be detected in various organs at day 17 after intravenous administration of silver nanoparticles in rats (Fabian et al., 2008; Pauluhn 2009; Lankveld et al., 2010). Titanium 23 24 nanoparticles were detected up to 90 days after a single and repeated intravenous 25 administration (Nanogenotox 2013). Therefore, to identify tissue distribution and the 26 potential for tissue accumulation and persistence of a nanomaterial, it is necessary to 27 design single and repeated kinetic studies, with a representative follow-up period of time 28 for adequate extrapolation of the half-life. In OECD 417 on toxicokinetic testing, the 29 follow up period is typically up to 7 days, which may be too short for nanomaterials in 30 view of their potential persistence in organs.

Release/elimination from an organ seems to be associated with a possible dissolution or
 degradation of the nanomaterials. Potential persistence occurs especially for non degradable solid nanomaterials.

34 If a known test usually used for chemical or bulk forms is adapted to conduct 35 (toxico)kinetic studies with nanomaterials, it is critical to have a reliable measurement system for the detection of the nanomaterials. However, the detection of nanoparticles in 36 37 tissues/organs is complex. Electron microscopy is neither applicable for quantitative 38 measurements nor for all nanomaterials. To date, most studies on toxicokinetics of 39 nanomaterials have used elemental analysis of the components of the nanomaterials e.g. 40 Zn for ZnO, Ti for TiO2, Ag for Ag nanoparticles. Analysis could be performed by using 41 inductively-coupled plasma mass spectroscopy (ICP-MS) or atomic absorption mass 42 spectroscopy (AA-MS). Although this provides a good indication of the possible tissue 43 distribution, the limitation is that the nanoparticles themselves are not detected or 44 measured. In combination with separation techniques like field flow fractionation (FFF), it 45 is possible to evaluate the presence of particles using the so-called single particle ICP-MS 46 (Van Der Zande et al., 2012).

47 Specific labelling of nanomaterials to follow their fate *in vivo* can be done by using 48 radioactive isotopes as radiolabel or fluorescent dyes. A disadvantage of these forms of 49 labelling is that the label can detach from the nanomaterial (Geiser and Kreyling 2010). A measurement or imaging will then identify the label, but not the distribution of the 50 nanoparticle. Alternatively, radioactive isotopes may be used that are isotopes of a metal 51 52 being part of the nanomaterial (e.g. gold or silver). With this approach, there is some 53 certainty that the nanoparticles themselves are detected. However, for silver nanoparticles, there is still uncertainty regarding the release of silver ions. In addition, 54

1 natural stable isotopes like 68 Zn may be used to demonstrate uptake from the application 2 site (Gulson et al. 2010).

There is uncertainty whether the nanomaterial or the released ions are detected especially when a nanomaterial can release ions (e.g. silver or zinc oxide). After skin application of sunscreens containing ⁶⁸Zn isotope enriched ZnO nanoparticles, the ⁶⁸Zn was detected in the blood of humans and in internal organs (e.g. liver) in mice, but skin penetration of the ZnO nanoparticles themselves was not detected (Gulson et al., 2010, Smond-McLeod et al., 2013).

Surface treatments may have a tremendous effect on the toxicokinetics of nanomaterials.
The PEGylation (coating a nanomaterial with polyethyleneglycol) decreased the blood
clearance of intravenously administered gold nanorods (Niidome et al., 2006, Lankveld et
al., 2011). Additionally, specific targeting to organs may be achieved by the coating of
nanomaterials.

- 14
- 15

16

17

3.6.3. Toxicokinetics of nanomaterials present in noninvasive medical devices

18 Uptake after dermal exposure

Dermal penetration can be assessed by using *in vitro* systems, for which the skin of many mammalian species, including humans, may be used as indicated in OECD 428, or *in vivo* according to OECD 427. But these means of assessment were not designed for nanoparticles and the problems mentioned above, related to nanoparticle quantitation, still remain.

However, dermal penetration of nanoparticles is generally considered to be low or absent (Butz et al., 2007, Monteiro-Riviere and Riviere 2009b, Sadrieh et al., 2010, Monteiro-Riviere and Larese Filon 2012). In general, nanoparticle penetration of the skin is limited to the first cell layers of the stratum corneum (Butz et al., 2007). However, for some nanomaterials, limited uptake was suggested. For example, when ZnO nanomaterial was applied on the skin in a sunscreen formulation, the presence of Zn in the blood originating from the ZnO in the sunscreen was observed (Gulson et al., 2010).

31 Silver (Ag) nanoparticles are widely used as antimicrobial agents, for example, in wound 32 dressings (Rai et al., 2009, 2014). In an *in vitro* system using human skin exposed to Ag 33 nanoparticles, a low translocation into the receptor fluid was found which was increased 34 5-fold in damaged skin (Larese Filon et al., 2009). However, it could not be clearly 35 demonstrated that nanoparticles were translocated, because the presence of elemental 36 Ag was determined with electrothermal atomic absorption spectroscopy (ETAAS) which 37 cannot discriminate between silver ions and silver particles. Treatment of burn patients 38 with wound dressings containing nanocrystalline silver resulted in an increase in blood 39 silver serum levels, although these levels were considered to be non-toxic to the patients 40 (Vlachou et al., 2007).

When studying skin penetration and absorption, the condition of the skin must be taken into account. Skin that has been damaged through abrasion, over-exposure to UVB (sunburn), exposure to mechanical stressors (skin flexing) or the effects of solvents and other will not react the same as healthy, undamaged skin (Monteiro-Riviere and Larese Filon 2012).

3.6.4. Invasive medical devices

3 **Uptake after ocular exposure (via the eye)**

4 Nanomaterials could be used in contact lenses. However, there are no data available 5 regarding the release and kinetics of such nanomaterials. In general, for the eye, the use 6 of various nanomaterials is aimed at enhancing the uptake and targeting drugs. In a 7 recent review, the therapeutic efficacy of drugs in ocular diseases was enhanced by the 8 use of nanoparticles such as liposomes, micro/nanospheres, microemulsions, and dendrimers (Honda et al., 2013). For chitin containing nanogels, penetration into the 9 10 deeper sections of the porcine cornea was observed without signs of destruction or 11 inflammation to corneal cells (Mohammed et al., 2013).

12 Uptake after inhalation exposure (e.g. related to dental procedures)

13 After exposure via the inhalation route, by either inhalation or instillation, a small but 14 significant fraction of the dose of nanoparticles may be demonstrated systemically, 15 although the majority of the nanoparticles remains in the lung (Kreyling et al., 2002, Semmler-Behnke et al., 2008, Sung et al., 2011, Abid et al., 2013). The elimination half 16 17 time from the lung for fine and ultrafine (nano)particles in rats was approximately 65 days (Pauluhn 2009, 2011). Due to the mucociliary cascade that removes inhaled 18 19 particles from the lung, a portion of the inhaled/instilled nanomaterials ends up in the 20 gastrointestinal tract and is excreted via the faeces (Abid et al., 2013). In addition, 21 inhaled nanomaterials may migrate into the brain via the olfactory nerve (Oberdörster et 22 al., 2004, Balasubramanian et al., 2013). The primary particle size of the nanoparticles 23 was important because smaller (7nm versus 20 nm) nanoparticles had a higher uptake from the lung (Balasubramanian et al., 2013). In this study, macrophage-mediated 24 25 mucociliary escalation followed by faecal excretion was the major pathway of clearing the 26 inhaled nanoparticles in the lungs.

27 Uptake after oral exposure

Uptake form the gastrointestinal tract (GI-tract) was demonstrated for several nanomaterials (Jani et al., 1990, 1994, Wang et al., 2007, Kim et al., 2008, Park et al., 2010 a, b), but the lack of uptake of nanoparticles was also observed (Yang et al., 2012). In general, smaller particles have a higher uptake (Jani et al. 1990, Park et al., 2010a). However, large titanium particles with a size of 500nm were also absorbed via the gastrointestinal tract (Jani et al., 1994).

34 **Uptake after transdermal exposure (implants)**

35 When present on or in medical devices that penetrate the skin, the local release of 36 coatings consisting of nanomaterials may be possible. In practice, transdermal and other 37 implants will most likely generate only a minor amount of locally released nanoparticles, 38 an exception being wear and tear occurring after arthroplasties. Thus, the subcutaneous 39 administration of nanomaterials may be an alternative for studying particle distribution. 40 Following subcutaneous injection, the largest particle agglomerates were found mainly in draining inguinal lymph nodes, and to a lesser extent, the liver, spleen and lungs 41 42 (Umbreit et al., 2011).

43

1 2

1 2

3.6.5. Conclusions on toxicokinetics of nanomaterials

3 The performance of toxicokinetic studies to evaluate tissue distribution and kinetics of 4 nanomaterials are indicated when there is the possibility for the release of free 5 (nano)particles from a medical device. Although methods used for chemicals in bulk form 6 can be adapted, specific attention should be given to the detection method. Blood 7 clearance generally appears quite quickly thus, blood levels are less important than the 8 ultimate tissue and organ levels. In addition, consideration should be given to the 9 potential for tissue accumulation and persistence of a nanomaterial (e.g. dissolution/degradation of the nanomaterial), for which repeated exposure and prolonged 10 11 follow-up time may be necessary.

12

13 3.7. Toxicological evaluation

- 14
- 15

3.7.1. Introduction

16

17 The toxicity testing strategy of an individual medical device containing nanomaterials is determined by its potential of external and internal exposure. Therefore, hazard 18 evaluation must be performed on a case-by-case basis, through a series of studies 19 including literature review, in silico, in vitro and in vivo studies. For medical devices, 20 selection of any *in vitro* or *in vivo* tests shall be based on end-use applications. All tests 21 shall be conducted according to recognised current/valid best laboratory/quality 22 practices, for example, Good Laboratory Practice (GLP) or ISO/IEC 17025, where 23 24 applicable, and data shall be evaluated by competent informed professionals (ISO 10993-1). The required toxicity studies should be performed in accordance with the 25 International Standards ISO 10993 series (ISO 10993 – 1, 3-6, 10-12, 17, 19). However, 26 it should be emphasised that none of currently available test methods, in vitro and in 27 vivo, have been validated specifically for nanomaterials. Materials in nanoform pose 28 29 many challenges when tested; unlike solubilised chemicals, nanomaterials generally exist as a suspension/dispersion of insoluble or partially-soluble nanoparticles and/or larger 30 31 agglomerates and aggregates, which may affect the test system.

32 The toxicity of nanomaterials is a response to the size and additional specific characteristics, most of them listed in Table 1. Therefore, it is essential that tests are 33 34 conducted using the same nanomaterial with the same chemical composition, size and 35 size distribution, surface properties and purity/impurity profile as the substance present in the medical device, and should, therefore, be characterized before testing. Thus, the 36 37 information on the nature and stability of the test substance under experimental conditions is of prime importance for the interpretation of any test results. If 38 39 a comparable/similar (nano)material is used this should be justified and documented.

There are ongoing developments in *in vitro* methods, but currently there are no validated *in vitro* methods for hazard assessment of nanomaterials (Park et al., 2009, Cockburn et al., 2012, Doak et al., 2012, Nel et al., 2013a). However, *in vitro* tests may be useful for screening purposes, and to elucidate possible mode of action (Basketter et al., 2013, Nel et al., 2013b), but their use should be evaluated on a case-by-case basis. A catalogue of all currently validated *in vitro* methods is published on:

46 <u>http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/validation-regulatory-acceptance/,</u>

47 Whilst *in silico* modelling approaches are advancing for conventional chemicals, 48 a relationship between the various physicochemical properties and toxicological effects of 49 nanomaterials has not yet been established/investigated to allow development of reliable 50 models for nanomaterials. As a result, only a few rudimentary *in silico* models are 51 currently available for nanomaterials (Toropov and Leszczynski 2007, Toropov et al., 2007, Puzyn et al., 2009, 2011, Sayes and Ivanov, 2010; Burello and Worth, 2011,
 Wang et al., 2014). However, they are unlikely to be useful in the foreseeable future for
 the assessment of relevant toxicological endpoints that are needed for risk assessment.

- 4
- 5

3.7.2. Potential pitfalls in toxicity testing of nanomaterials

6

Following the ISO 10993-1:2009 standard regarding the evaluation and testing of medical devices within a risk management process, the toxicity testing strategy for each device should be considered case-by-case based on the type of medical device, type of contact and duration of exposure. Most of the toxicity assays as described in the various parts of the EN-ISO 10993 series are developed specifically for medical devices, and are based on the OECD Guidelines for the testing of chemicals.

13 Testing of insoluble or partially-soluble nanoparticles using in vivo or in vitro methods 14 must also take into account that they will be present in a dosing or test medium as a nano-dispersion rather than in solution. Therefore, any toxicity testing using in vivo and 15 in vitro methods should pay special attention to the agglomeration/aggregation 16 17 behaviour, and the insoluble/ partially-soluble nature of nanomaterials (SCENIHR, 2009; Kreyling et al., 2010, EFSA 2011, SCCS 2012). Possibilities for disagglomeration of 18 19 nanomaterial should also be considered. During toxicological evaluations, some 20 properties of nanomaterials may change due to interaction with the surrounding media.

Special care is, therefore, needed in regard to the applied doses, which can be affected by the above-mentioned phenomena. In addition, the concentration of a nanomaterial may decrease during a test due to sedimentation, binding with other moieties in the test medium, or adhesion to glass/plastic ware. It is therefore important to ascertain the stability and uniformity of the nanomaterial in a test medium to ensure that the applied concentration/dose is maintained for the intended period during the test.

It is important to consider if vehicle and/or the test or cell culture medium does not modify the physicochemical properties (including adsorption of biomolecules on the surface) of the nanomaterial tested because it may influence general toxicity. It is therefore important to ascertain the stability and uniformity of the nanomaterial in a test medium to ensure that the applied concentration/dose of nanomaterial is as assumed (Allouni et al., 2009).

33 Since endotoxin may interfere with the test system and may lead to false negative or 34 positive results depending on the test system, it should be excluded before testing nano 35 materials."Endotoxin may interfere with the test system and may lead to false negative 36 or positive results depending on the test system.

Importantly, there may be an interaction between test reagents and the nanomaterials 37 38 especially in colorimetric assays (such as sulforhodamine B dye, or MTT used in the 39 viability assays). Moreover, some nanomaterials may themselves disperse/ absorb light 40 and therefore, interfere with the measurements in colorimetric assays. These aspects 41 need to be considered when using colorimetric methods. Produced proteins/biological 42 mediators (e.g. cytokines) may also bind/adsorb on nanomaterial surfaces and may lead 43 to low responses or even false negative results (Worle-Knirsch et al., 2006, Monteiro-44 Riviere et al., 2009a; Wilhelmi et al., 2012).

Some metals (silver) or metal oxides (ZnO) undergo (slow) dissolution in media, therefore, part (or all) of the activity measured might be due to the dissolved ions. It might be warranted for those types of nanomaterials to determine the solubilised fraction before and during testing.. In some assays, adding a suitable control in the ionic form should be considered.

50 The harmfulness of nanomaterials may arise from their size-related ability to readily 51 enter biological systems and modify the structure of proteins through formation of new protein complexes or enhanced protein degradation (Lovric et al., 2005, Aggarwal et al.,
 2009, Mailander and Landfester 2009).

3 Nano-sized particles are likely to be phagocytised by inflammatory cells, especially 4 macrophages and polymorphonuclear neutrophils. Whether the particles are in 5 aggregated or non-aggregated suspension is critical for absorption and notably these 6 aggregates and agglomerates may be larger than the nano-size range (i.e. 100 nm), 7 although aggregates/agglomerates smaller than 100 nm may also be present. Affinity for 8 and subsequent adsorption of proteins and peptides may change the biological 9 significance and enhance triggering of inflammatory humoral and cellular processes. 10 Endocytosis of spherical NPs is easier and faster compared to rod-shaped or fiber-like 11 nanomaterials (Champion and Mitragotri 2006), Rod-shaped or needle-like NPs may have 12 a larger contact area with the cell membrane receptors than spherical NPs when the 13 longitudinal axis of the rods interacts with the receptors. Hence, rod or needle ends with 14 high curvature at the half-cup stage of endocytosis are very likely to produce higher 15 energy at the membrane surface, causing a large distorting force that exceeds the 16 maximum force provided by the actin polymerisation. This effect stalls the growing ends 17 of the phagocytic cup and results in impaired phagocytosis and the macrophage 18 spreading onto the material rather than internalizing it (Lu et al., 2010).

19 The metrics used for toxicity assessments are normally measured and expressed in 20 weight or volume units (such as mg/Kg, or mg/L) for conventional chemicals. However, 21 such metric expressions may not be appropriate for nanomaterials, because of the large 22 surface areas per particle mass or volume. For nanomaterials, surface area or number of 23 particles might give a better description of a possible dose-response effect relationship. 24 Nanoparticle shape can modify activity as well. Until suitable parameters are identified, it 25 is important that different dose-describing metrics, such as weight/volume concentration, 26 particle number concentration, surface area etc. are available, which provide sufficient 27 information to converse doses based on mass into other parameters (Donaldson et al., 28 2013b).

Sample preparation and possible reference materials for the safety evaluation of medical devices are described in ISO 10993-12:2012). Although this standard does not specifically addresses nanomaterials, it provides general information on sample preparation from solid materials. In addition, also the nanomaterials themselves, e.g. when provided as powder of in liquid dispersion, may be used in the assays for safety evaluation.

- 35
- 36

3.7.3 Toxicity testing methods

1 2

3 Cytotoxicity

The ISO 10993 – 5:2009 describes test methods to assess the *in vitro* cytotoxicity of medical devices. In addition, currently a standard is under preparation for an *in vitro* cytotoxicity assay specifically dedicated to nanomaterials (ISO/AWI 19007 Modified MTS assay for measuring the effect of nanoparticles on cell viability, ISO, Geneva, Switzerland).

9 Driven by European politics on animal welfare, there are continuous efforts to find in vitro 10 alternative methods to *in vivo* testing on animals. However, at the moment, there are no validated in vitro methods for hazard assessment of both chemicals and nanomaterials, 11 12 In vitro tests may be useful for screening purposes, for indicating potential toxicity of a nanomaterial and to elucidate possible mode of action (Nel et al., 2013b), providing 13 14 pointers for further toxicological investigations. For example, in vitro tests may indicate 15 the likelihood of generation of reactive oxygen species (Xia et al., 2008), which may 16 provide an alert for potential toxic effects via the induction of oxidative stress and 17 activation of inflammatory and proliferative pathways (Unfried et al., 2008, Donaldson et 18 al., 2010, 2013b).

19 Considering acute toxicity testing for appropriate classification, a number of cytotoxicity 20 assays have been proposed. Recently, a major effort has been undertaken (AcuteTox 21 project - <u>www.acutox.org</u>) to create an integrated testing strategy to replace the animal 22 testing for predicting human acute oral systemic toxicity which is based exclusively on in 23 vitro and in silico methods. The 3T3/NRU assay was indicated as a first step in a tiered 24 testing strategy being suitable to identify unclassified substances (LD50 > 2000 mg/kg). 25 However, nanomaterials were not included into the selected tested substances and 26 therefore, the use of such test should be evaluated on a case-by-case basis.

27

28 Acute toxicity

29 Acute toxicity testing for medical devices is part of the ISO 10993-11: 2006 standard dealing with determination of systemic toxicity of medical devices (ISO 2006). An acute 30 31 toxicity study might be an initial step in establishing a dosage regimen in 32 subacute/subchronic and other studies and may provide information on the mode of toxic action of a substance by the intended clinical exposure route. For medical devices, the 33 test sample preparation, consisting in general of both a hydrophilic and a lipophilic 34 35 extract of the material or the medical device, is presented in ISO 10993-12: 2012 (ISO 36 2012). However, to obtain an indication of the toxicity of a nanomaterial, a dispersion of 37 the nanomaterial itself as it is used in the medical device may also be considered. Other 38 information on the performance of an acute toxicity test in addition, to ISO 10993-39 11:2006 can be found as follows: for acute oral toxicity testing using the fixed dose 40 method [EC B.1 bis, OECD 420], the acute toxic class method [EC B.1 tris, OECD 423], or the up-and-down procedure [OECD 425]. The acute toxic class method by the 41 inhalation route is described in OECD 403 and 436, and the in vivo acute dermal toxicity 42 43 assay is described in EC B.3 and OECD 402 and 404.

44

45 Irritation activity

The ISO – 10993-10:2010 describes test methods to assess the potential to produce irritation (and delayed-type hypersensitivity) of medical devices and their components after topical skin application. In addition, ISO 10993-10:2010 describes intradermal irritation tests for medical devices used as implants or transdermally. Specific irritation tests are described in Annex B including eye irritation tests, oral mucosal irritation tests, and rectal, penile and vaginal irritation tests.

- 1 For chemicals the determination of irritation/corrosivity an *in vivo* method is used based 2 on the Draize test as described in EC B.5, and OECD 405.
- 3 The following five validated *in vitro* alternatives are available (Regulation (EC) No 440/2008) for skin corrosion assessment of chemicals:
- 5 a) TER test (rat skin transcutaneous electrical resistance test) [EC B.40, OECD 430]
- 6 b) EpiSkin[™], EpiDerm[™], SkinEthic[™], EST-1000 [EC B.40bis, OECD 431]
- 7 Three of them, namely EpiSkin[™], Modified Epiderm[™]Skin Irritation Test (SIT) and
 8 SkinEthic[™] Reconstructed Human Epidermis (RHE) are validated for skin irritation
 9 assessment for chemicals (OECD 439).
- 10 No specific validation of the *in vitro* alternative tests has been performed for medical 11 devices and/or nanomaterials, although there is no clear scientific basis against the use 12 of these methods for nanomaterials.
- 13 The assessment in vivo of eye irritancy or corrosivity on substances is based on the 14 result of the classic Draize in vivo eye irritation test on rabbits according to EC B.5, and 15 OECD 405 test quideline. There are alternative methods available replacing this test: the 16 Bovine Cornea Opacity Permeability (BCOP) [OECD 437], the Isolated Chicken Eye (ICE) 17 [OECD 438], and an *in vitro* cell assay (OECD 460). These assays, although using animal 18 eyes, are considered alternatives, since they are obtained from animal slaughterhouses. 19 They are able to discriminate corrosive and severe eye irritants, but fail to distinguish 20 mild from non-irritants
- There is no indication about the possibility of using these tests (*in vivo* or *in vitro*) for the testing of different forms of nanomaterials as such and/or extracts from medical devices. The ICE test is not suitable for solid samples. The assays can probably also be used for nanomaterials, but validation has not yet been performed and would potentially provide supporting evidence.
- 26 It is possible that some insoluble particulate materials can induce eye irritation not only 27 chemically, but also mechanically by interfering with the eye tissue or the cell.
- 28

29 **Delayed-type hypersensitivity**

ISO - 10993-10:2010 describes test methods to assess the potential to induce delayed-30 31 type hypersensitivity for medical devices and their components. Three in vivo methods 32 are described, two using guinea pigs and one using mice, for assessing skin sensitisation potential. The murine local lymph node assay (LLNA) in its three versions is the preferred 33 method in view of animal welfare (OECD 429, 442A and 442B). The two guinea pig 34 35 assays are the Magnusson Kligman Guinea Pig Maximisation Test (GPMT) as described in EC B.6, OECD 406, and ISO 10993-10:2010., and the Buehler test (EC B.6, OECD 406, 36 37 ISO 10993-10:2010).

38 Due to the larger surface area of particles, nanomaterials may be regarded as potential 39 allergic chemicals through their adjuvant capacity and complex formation with cell 40 proteins (Larsen et al., 2010, Lee et al., 2011).

41 The above described standard tests for skin sensitisation have not been specifically 42 evaluated for testing of nanomaterials. A significant difference exists between the LLNA and the Buehler test that both involve application of the test compounds (e.g. 43 44 nanomaterials) on the surface of the skin, and the GPMT that involves intradermal application. The LLNA has been used to verify sensitisation of nanomaterials, but no 45 positive response has been found (Lee et al., 2011). In addition, the LLNA has been used 46 47 to verify whether nanomaterials can potentiate the level of sensitisation of known 48 sensitisers (Lee et al., 2011). The value of both tests in Lee et al (2011) was challenged, 49 because dermal penetration was not assessed. Currently, no experimental data is available on nanomaterials tested using GPMT. However, negative results were reported 50

for ZnO using a modified GPMT with topical application on a FCA treated skin (Jang et al.,
 2012, Park et al., 2013).

Based on the current knowledge, it is not possible to rely on the use of one specific test method for nanomaterials. The use of LLNA and/or Buehler test will probably not result in sensitisation due to possible low skin penetration of nanomaterials. In view of the intradermal application, the GPMT is currently probably the most relevant test for detecting sensitisation activity of nanomaterials, although the intradermal induction phase is followed by a topical induction phase and topical challenge in the intract skin.

9 Importantly, these tests only identify the hazard for delayed type hypersensitivity; for 10 acute hypersensitivity mediated by immunoglobulin-E, currently no assays are available.

11

12 Genotoxicity

ISO 10993-1 indicates considerations for identifying when the potential for genotoxicity is
a relevant hazard. In general, the testing for genotoxicity is not necessary for medical
devices, and components thereof, made only from non-genotoxic materials. This rule
might also apply for nanomaterials. ISO 10993-3:2003 describes tests for genotoxicity
(carcinogenicity and reproductive toxicology).

18

19 In vitro genotoxicity testing

In selecting a suitable battery of *in vitro* genotoxicity tests, the three critical genotoxicity endpoints (gene mutation, structural and numerical chromosome aberrations) should also be considered.

Although a bacterial reverse mutation assay (Ames test, OECD 471) is a reliable 23 24 genotoxicity screen for the analysis of chemicals, it does not appear to be suitable for the 25 assessment of nanomaterials. This might be related to the degree of uptake by the 26 bacterial cells, which is likely to be less than in human cells for two reasons. Firstly, 27 prokaryotes cannot perform endocytosis and secondly, their cell wall forms a barrier 28 against simple diffusion of nanomaterials (particularly those in agglomerated form) into 29 the bacterial cell - this lack of uptake could potentially lead to false negative results. 30 Therefore, the Ames test is unlikely to be a suitable general in vitro genotoxicity screening test for nanomaterials, although recently also uptake of nanomaterials was 31 32 observed in the Ames test (Clift et al., 2013). Additionally, modifications to the technique 33 may need to be considered to promote uptake of nanomaterials into the Ames test 34 bacteria to reduce the potential for false negative results (Landsiedel et al., 2009, Doak 35 et al. 2012, Magdalenova et al, 2012, 2014).

36 The following *in vitro* tests are recommended for testing of nanomaterials:

- A test for induction of gene mutations in mammalian cells (preferably the mouse
 lymphoma *tk* assay with colony sizing) (OECD 476)
- 39 2. An *in vitro* micronucleus assay (OECD 487) or a chromosome aberration test (OECD 40 473)

There may be circumstances under which it may be justified to deviate from the abovementioned core set (e.g. when there is a need to test the nanomaterial in a matrix that cannot be added *in vitro*). In such cases, a scientific justification should be provided and additional types of considerations or *in vivo* studies may be needed. In certain instances, (e.g. soluble, very small, inducing reactive oxygen species nanomaterials) a bacterial reverse mutation test might still be informative.

For all *in vitro* tests, uptake of the nanomaterial in either bacteria or cells should be demonstrated in order to indicate potential DNA exposure to the nanomaterial under investigation.

1 In vivo genotoxicity testing

Unless it can be adequately demonstrated that positive *in vitro* findings are not relevant for the *in vivo* situation or if it is impossible to test the nanomaterial, *in vitro* and *in vivo* testing is necessary (Eastmond et al., 2009). Before embarking on any necessary followup, other relevant data on the substance, such as information about chemical reactivity (which might predispose the site of contact effects), bioavailability, metabolism, toxicokinetics, and any target organ specificity should be considered.

8 *In vivo* genotoxicity tests should relate to the genotoxic endpoint(s) identified as positive 9 *in vitro* and to appropriate target organs or tissues. Evidence, either from the test itself 10 or from other toxicokinetic or repeated-dose toxicological studies, that the target 11 tissue(s) have been exposed to the test substance and/or its metabolites is essential for 12 interpretation of negative results. The choice of the appropriate *in vivo* genotoxicity 13 test(s) requires expert judgement based on all available information, to be applied case-14 by-case. Any of the following *in vivo* tests may be suitable

- an *in vivo* micronucleus test (OECD 474)
- an *in vivo* mammalian bone marrow chromosome aberration test (OECD 475)
- an *in vivo* mammalian spermatogonial chromosome aberration test (OECD 483)
- a transgenic rodent gene mutation assay (OECD 488)
- an *in vivo* Comet assay (no OECD test guideline at present; internationally agreed
 protocols available, e.g. see hptt://cometassay.com)

However, these guidelines have been developed for testing chemicals, and their
suitability for nanomaterials testing should not be taken for granted, because of their
distinct physicochemical properties can seriously influence their interactions with DNA
(Dusinska et al. 2009; Warheit and Donner 2010, Magdalenova et al, 2012, 2014).

Caution is needed with the micronucleus test when nanomaterials are tested. Cytochalasin B, which is often used to inhibit cytokinesis, may also inhibit endocytosis, and hence, has been suggested to lead to false negative outcomes with nanoparticles (Landsiedel et al., 2009), especially when Cytochalasin B and the nanomaterials are added to the test system simultaneously at the start of the experiment. This might be avoided by adding the Cytochalasin B after the start of the incubation (e.g. at 6 hours after adding the nanomaterials to the cells).

32 Moreover, for several types of nanoparticles (e.g. titanium dioxide, multi-walled carbon 33 nanotubes), the microscopic evaluation of cytokinesis-block proliferation index and 34 micronucleus identification was found to be rather difficult at high testing concentrations 35 due to the abundant presence of nanomaterials in the cells (Corradi et al., 2012). This 36 problem might be (partly) solved by for example histological staining with fluorescent-37 labelled DNA probes that reduces the risk of falsely identifying nanoparticle aggregates as micronuclei fragments in the micronucleus test (Magdolenova et al., 2014). In the 38 39 comet assay, it was shown that nanomaterials tested did not interact with endonucleases 40 used for detection of DNA breaks (Magdolenova et al., 2012).

41

42 Haemocompatibility

The ISO 10993-4:2002 (and its amendment 10993-4:2002/Amd 1:2006) standard is applicable to devices that contact the circulating blood and serve as a conduit into the vascular system. Medical devices that need to be evaluated for their blood compatibility include external communicating devices that have an indirect blood contact, external communicating devices directly in contact with circulating blood, and implant devices that are placed largely or entirely within the vascular system.

49 Most tests for haemocompatibility according to ISO 10993-4:2002 are based on direct 50 contact between a surface and whole blood or components of blood. Thus materials with nano-structures on their surface can be directly evaluated using the same methods
 described in the 10993-4 standard on selection of tests for interactions with blood.

For nanomaterials in general or in particular form there are no established tests available today. One of the tests in the 10993-4 standard, the haemolysis test, is based on testing of extracts and a suspension of nano-particles could thus be used for testing.

6 When contact with blood is possible, especially for free nanomaterials/nanoparticles 7 a potential interaction with phagocytic cells, e.g. polymorphonuclear cells and 8 monocytes, has to be carefully considered. The nanoparticles may be presented with 9 different surface properties and in different aggregate forms depending on which medium 10 they are suspended in. These factors are critical for the interaction with phagocytic cells.

No standards are currently available for the evaluation of particle and especially 11 12 nanoparticle interaction with phagocytic cells. Although in many *in vitro* tests, phagocytic 13 macrophages are used as target cell. One possible way to indirectly evaluate the 14 haemocompatibility of particulate nano-material is to inject a suspension of nano-15 particles into the vasculature and evaluate the distribution as well as any local and 16 systemic signs of adverse events like vascular damage, activation of complement, activation of the coagulation cascade or activation of platelets. Methods for testing the 17 18 activation of complement, coagulation cascade and activation of platelets are described in 19 the 10993-4 standard.

20

21 **Repeated- dose toxicity**

The ISO 10993-11:2006 describes specifically for medical devices tests for repeated dose toxicity appropriate for the route and duration of exposure. Repeated dose toxicity testing for chemicals is described in various OECD test guidelines (407, 408, 409, 411, 412, 413, 415, 416, 422, 443, 451, 452, 453).

26 ISO 10993-11:2006 addresses the evaluation of generalised systemic toxicity, not 27 specific target organ or organ system toxicity, even though these effects may result from 28 the systemic absorption and distribution of substances released from medical devices. 29 Because of the broad range of substances used for the production of medical devices and 30 intended uses, this part of ISO 10993 is not overly prescriptive. Whilst it addresses specific methodological aspects to be considered in the design of systemic toxicity tests, 31 32 proper study design for the evaluation of nanomaterials must be uniquely tailored to the 33 nature of the nanomaterials present in a medical device and its intended clinical 34 application or use.

Whenever possible, the nanomaterials in medical device shall be tested in a form representative of its "ready to use" state and applied under most adequate conditions in which it is to be used. Testing shall be performed on nanomaterials obtained from the final product and/or representative component samples of the final product.

39 Preferably, the repeated dose toxicity studies should be performed based on the location of the potential exposure, i.e. the site of the use of the medical device, and the 40 41 knowledge regarding the toxicokinetics of the released nanomaterials. However, due to 42 practical reasons, most of the repeated-dose toxicity testing is performed using oral 43 route. The administration of test material in the in vivo oral toxicity studies could be done 44 by adding the nanomaterial to the animal feed, to the drinking water, or by gavage. In 45 this case, information should be available on the occurrence of potential differences in 46 the bioavailability of the nanomaterial depending on the route of exposure as was demonstrated for Au nanoparticles for intratracheal and intravenous administration 47 48 (Oberdörster 2010, Semmler-Behnke et al., 2008).

For administration the nanomaterial should ideally be homogeneously blended into the
feed matrix or stably and uniformly dispersed in the drinking water or gavage vehicle.
The stability and physico-chemical characteristics of the nanomaterial in the vehicle

should be determined. Possible interactions with the administration vehicle should be also
 determined in advance, before choosing the way of exposure to nanomaterials.

3 There may be limitations on the amounts of nanomaterial that can be administered, 4 because it may applomerate in the drinking water or gavage vehicle, or they may already 5 be blended as agglomerated powder into the feed, which in addition, may not be 6 uniformly mixed within the food matrix. The administration of the test material requires 7 careful control and dynamic characterisation of tested nanomaterial in either the liquid or 8 the feed matrix. For example, a nanomaterial in liquid may adsorb to the walls of the 9 drinking vessel and therefore becomes no longer available (i.e. there will be no 10 exposure).

11 To overcome some of the obstacles mentioned above, a nanomaterial can be applied by 12 gavage, aiming for the nanomaterial to be dispersed, characterised and administered under well-defined conditions. However, application by gavage is not likely to be 13 14 representative of the lower concentrations delivered over time from nanomaterial 15 administered via feed. Gavage provides a bolus of the material at a given time that may 16 or may not mix with the gastrointestinal fluids, which might result in a higher local 17 concentration and increased quantity of absorbed material due to the nanomaterial being 18 in the form of a single, large dose and the lack of co-ingestion of dietary components to 19 which nanomaterial can easily bind.

In any of the oral administrations mentioned above, one has to consider that the passage through the acid environment of the stomach and mixing with the chyme in the gut may affect the nanomaterial. Consideration of the potential for time dependent dissolution/ degradation is essential, as is the consideration of physico-chemical nanomaterial modifications such as agglomeration and surface modifications by proteins and biomolecules.

However, the systemic availability of nanomaterials after oral administration may be
limited (see 3.6.4). Initial toxicokinetic studies might indicate whether oral administration
is a proper method for identifying potential systemic toxicity. Other routes for evaluating
systemic toxicity may also need to be considered (e.g. intravenous, subcutaneous
administration) depending on the use of the medical device.

31

32 Implantation

At present, there are no accepted or validated methods for biological evaluation of implanted nanomaterials. However, some guidance can be found in ISO 19003-6:2007. The test methods apply to a wide range of materials such as solid and non-absorbable, absorbable, non-solid (such as porous materials), liquids, gels, pastes and particulates.

37 The test methods may also be applied to medical devices that are intended to be used

38 topically in clinical indications when the surface or lining may have been breached, in

39 order to evaluate local tissue responses.

40 The local effects are evaluated by a comparison between the tissue response caused by a test specimen to the tissue response caused by control materials used in medical devices 41 42 of which the clinical acceptability and biocompatibility characteristics have been established. The objective of the test methods is to characterise the history and evolution 43 44 of the tissue response after implantation of a medical device/biomaterial including final integration or absorption of the material. In particular, for absorbable materials the 45 degradation characteristics of the material and the resulting tissue response should be 46 47 determined. All materials will provoke an inflammatory response when implanted. It is 48 the extent and seriousness of this local inflammatory reaction that indicates whether this 49 reaction should be considered adverse. For non-degradable materials, a steady state on 50 the tissue response is generally obtained after 12 weeks, while for absorbable materials 51 this depends on the rate of absorption that may be shorter or much longer than 12 52 weeks.

ISO 10993-6:2007 on implantation testing does not deal with systemic toxicity, carcinogenicity, teratogenicity or mutagenicity. However, the long-term implantation studies intended for evaluation of local biological effects may provide insight into some of these properties. Systemic toxicity studies conducted by implantation (ISO 10993-11:2006) may satisfy the requirements of this part of ISO 10993-6. When conducting combined studies for evaluating local effects and systemic effects, the requirements of both standards needs to be fulfilled.

8 It can be reasonably anticipated that the tissue response to absorbable implant materials 9 will be different from the tissue response found in non-absorbable (durable) implants. 10 The assumption should be one of continuous interaction of the degrading material with 11 the surrounding tissue, accompanied with an ongoing presence of a degradation-rate-12 dependent tissue response. Such a response may vary over time and may (or may not) 13 be histologically detectable dependent upon the composition and manufacturing of the 14 materials, the rate of degradation, the time post-implantation, and the tissue within 15 which the implant resides. This tissue response should resolve and normal morphology 16 restored as the degrading material is absorbed into the surrounding tissue.

To properly evaluate an absorbable implant and its degradation products, local tissue response may need to be assessed at more and different study intervals than those typical for non-absorbable materials. The provisions in ISO 10993-6 (Annex A, General considerations regarding implantation periods and tissue responses to absorbable materials) are also applicable to the evaluation of the local effects of absorbable materials used as carriers for drug release, scaffolds for tissue-engineered medical products, or surface coatings for non-absorbable implants.

The particles may have a local effect at the site of the implant but may also show migration, for example, to the draining lymph nodes. Of course, the local effects are limited to the site of the implantation (or use of the medical device) and depend on that localisation. An example of such a local effect is wear of joint prostheses leading to particle accumulation in synovial fluid and synovial tissues. Biological effects are greatly influenced whether the particles are deposited in subcutaneous tissue, intra-peritoneally or into the blood.

31

32 **Chronic toxicity/carcinogenicity**

ISO 10993–3:2003 describes tests for genotoxicity, carcinogenicity and reproductive toxicity. The decision to perform a carcinogenicity test that usually lasts for 2 years, shall be justified on the basis of the potential exposure arising from the use of the medical device, nanomaterials and or their extracts. However, in practice, it is rarely considered applicable to investigate carcinogenicity because of the already existing knowledge about the material used for a medical device. The most common *in vivo* tests to assess the carcinogenic potential of chemicals are:

- 40 a) Carcinogenicity test [EC B.32, OECD 451]
- b) Combined chronic toxicity/ carcinogenicity test [EC B.33, OECD 453]
- 42 But no indication about their suitability for nanoparticles has been provided so far. 43 Therefore, the use of such tests should be evaluated on a case-by-case basis.
- 44

45 **Reproductive and developmental toxicity**

Before a decision to perform reproductive and developmental toxicity tests is made, ISO
10993-1:2009 and ISO 10993-3:2003 should be taken into consideration.

48 There is no need for reproductive toxicity testing of resorbable medical devices or 49 medical devices containing leachable nanomaterials/nanoparticles if there are adequate 50 and reassuring data from absorption, distribution, metabolism and excretion (ADME) 51 studies indicating that the test item (nor its metabolites) is not distributed and does not

- reach the reproductive organs/targets or on lack of the reproductive toxicity of all
 components in extracts of medical devices.
- 3 In the absence of evidence to rule out reproductive/developmental risks, testing should 4 be considered. This may include tests on the following medical devices containing 5 nanomaterials:
- 6 prolonged or permanent-contact medical devices likely to come into direct contact with 7 reproductive tissues, embryos or foetus;
- 8 energy-depositing medical devices;
- 9 resorbable or containing leachable nanomaterials/nanoparticles.

If testing is required, this shall start with OECD 421 (Reproduction/Developmental 10 Toxicity Screening Test) in order to provide initial information on possible effects on 11 reproduction and/or development. Positive results with tests are useful for initial hazard 12 13 assessment and contribute to decisions with respect to the necessity for timing of 14 additional tests. If additional tests are considered necessary, they shall be performed in 15 accordance with OECD 414 (Prenatal Developmental Toxicity Study), OECD 415 (One-Generation Reproduction Toxicity Study), OECD 416 (Two-Generation Reproduction 16 Toxicity Study) or OECD 422 (Combined Repeated Dose Toxicity Study with the 17 Reproduction/Developmental Toxicity Screening Test), as appropriate. No indication is 18 19 available on the suitability of these tests designed for chemicals to assess the 20 reproductive toxicity potential of nanoparticles. Therefore, the use of such methodologies 21 should be evaluated on a case-by-case basis.

22 More recently test guideline OECD 443 was published on the so-called extended one 23 generation reproductive toxicity study which combines several endpoints including 24 reproductive/developmental endpoints, neurodevelopmental and immune developmental 25 endpoints.

Methods for embryotoxicity testing are likely to be applicable to nanomaterials, provided that typical nanomaterial related issues such as dispersion/ aggregation, adsorption, stability and distribution into the tissue are taken into consideration. In an *in vitro* embryonal stem cell assay, which was used for research purposes only, effects on cardiomyocyte development were observed for silica nanoparticles (Park et al. 2009).

Assessment of effects on the first generation (F1) or even second generation (F2) shall be made in accordance with OECD 414, OECD 415, OECD 416, OECD 421, OECD 422 or OECDE 443. As the OECD guidelines were not intended for nanomaterials/nanoparticles in medical devices, the following modifications shall be considered: dose (in the case of energy-depositing devices), route of application (implant, parenteral, other), extraction media (aqueous and non aqueous extracts) or exposure time.

It is not recommended to use methods of exposure that for some reason could affect prenatal development. For example, intraperitoneal administration may cause the tested nanomaterials/nanoparticles to be directly injected in the uterus itself or pass through the wall of the uterus and directly affect the developing embryos/fetuses. Inhalation exposure "nose only" does not seem to be appropriate for pregnant females due to the fact that the animal being tested is kept under forced, stressful conditions and tightly restrained for about 6h/day without access to feed and water.

44 In the developmental toxicity study one should be aware of possible exposure to 45 offspring via breast milk (Melnik et al., 2013) The presence and concentration of 46 nanomaterials/nanoparticles in the milk of lactating animals should be measured.

-
- 48
- 49

3.8. Evaluation of nanomaterials used in medical devices

1 2

The evaluation of the risk of chemicals leaching from a medical device is described in EN ISO 10993-17:2002. The methodology for the evaluation of allowable limits for chemicals may also be applied to nanomaterials. In this standard, the estimated exposure needs to be compared with the toxicity information. In addition, the benefit for the patient needs also to be considered in the evaluation of medical devices.

8 In addition to the selection of safety evaluation assays as presented for medical devices 9 in ISO 10993-1:2009, specific testing for the nanomaterials used in a medical device 10 may be necessary. The testing to be performed is determined similarly to ISO 10993-1 11 but now based on the potential for release of the nanomaterials from the device and the 12 duration of exposure. According to ISO 10993-1 the need for testing for hazard 13 identification is based on the type of medical device, type of contact and duration of 14 exposure. A schedule is proposed in Table 4.

Table 4: Framework for specific nanomaterial toxicity testing based on potential release (exposure) of nanomaterials from medical devices.

Testing proposed	Non invasive short term use	Non invasive long term use	Invasive short term use	Invasive long term use
	Phys: chem	Phys: chem	Phys: chem	Phys: chem
	Cytotoxicity in vitro	Cytotoxicity in vitro	Cytotoxicity in vitro	Cytotoxicity in vitro
Low	Irritancy <i>in</i> vitro	Irritancy <i>in</i> vitro	Irritancy <i>in</i> vitro	Irritancy in vitro
exposure	Hypersensitivity	Hypersensitivity Genotoxicity in vitro	Hypersensitivity	Hypersensitivity Genotoxicity in vitro
				General Immuno toxicity testing
		Genotoxicity <i>in</i> <i>vivo</i>	Other <i>in vitro</i> plus <i>in silico</i> testing*	28/90 day <i>in</i> <i>vivo</i> toxicity test
Medium exposure		Immuno toxicity at location site	Genotoxicity <i>in</i> <i>vitro</i> and <i>in</i> <i>vivo</i>	Full genotoxicity testing
Additional tests		Persistence /accumulation studies at location site only		ADME including persistence /accumulation studies
High exposure Additional tests	Selected <i>in vivo</i> acute toxicity tests focussed on location site(s)	Selected <i>in vivo</i> chronic toxicity tests focussed on location site(s)	<i>In vivo</i> acute toxicity tests	In vivo chronic toxicity tests may include reprotox depending on patient group.

17

*See also ECVAM database (http://ihcp.jrc.ec.europa.eu/our_labs/eurl-ecvam/validation-

18 regulatory-acceptance/)

1

3.8.1. Non-invasive surface contacting medical devices

2

This category applies to devices that contact intact skin and breached or compromisedsurface (ISO 10993-1:2009)

5 Surface contacting medical devices will interact locally as long as the skin has not been 6 breached. There is little or no evidence that nanoparticles will penetrate the natural skin. 7 Therefore, potential for internal systemic exposure is low or negligible regardless the 8 type of application (Table 1). The local effects should be evaluated (e.g. cytotoxicity and 9 irritation) using the same principles as medical devices without nanomaterial 10 components. However, established methods for the evaluation of sensitisation potency of 11 nanomaterials are at the moment not available.

- 12
- 13

3.8.2. Invasive surface contacting medical devices

14

15 If there is a concern that the barrier properties of the skin are changed by a wound or an 16 inflammatory process, the possibility that nanoparticles may penetrate and become 17 deposited locally and migrate to other localisations should be considered. This may be 18 done by investigating the actual penetration through compromised skin in an animal 19 experimental model. Such experimental models are difficult to establish and validate, and 20 a better approach may be to investigate the effects of intra-dermally or subcutaneously introduced particles. This may follow the protocol of the already established intracutaneous irritation test as described in ISO 10993-10:2010, but extended to 21 22 23 include histological evaluation of draining lymph nodes.

When a nanomaterial containing medical device is in contact with breached or compromised skin and nanomaterials are released additional testing for systemic toxicity should be considered including genotoxicity testing independent of the contact duration time. A suitable battery of *in vitro* genotoxicity tests addressing three critical genotoxicity endpoints (gene mutation, structural and numerical chromosome aberrations) should be considered.

- 30
- 31

3.8.3. Invasive external communicating medical devices

32

This category applies to devices that can contact circulating blood at one point and serve as a conduit for entry into the vascular system (indirectly), circulating blood directly and making contact with tissue, bone, pulp/dentin (ISO 10993-1:2009). Invasive external communicating medical devices may contain nanomaterials that maybe released after material degradation or be present as nano-size structures on its surface. Dialysis and oxygenating equipment are also included in this category.

It is of vital importance to consider the type of tissue that may be exposed. The effect on draining lymph nodes or other organs that may be reached after particle migration should be investigated. The presence of nanoparticles in tissue should be investigated using the appropriate identification techniques (e.g. ICP-MS, electron microscopy, fluorescent dye labelling) and, whenever possible, a quantitation should be performed.

44

3.8.4. Invasive implantable medical devices

3 An invasive medical device is defined as a device that, in whole or in part, penetrates 4 inside the body, either through a body orifice or through the surface of the body 5 (Directive 93/42/EEC). This includes implant devices that contact principally blood, tissue 6 and bone (ISO 10993-1:2009). Medical devices applied through body orifices coming into 7 contact with mucosal membranes are also considered invasive medical devices. In 8 general testing of this type of medical devices is performed according to ISO 10993-1 9 thus depending on the type of tissue contact and the duration of the contact. For 10 nanomaterials used in medical devices a similar approach needs to be considered 11 although special emphasis should be the potential release of the nanomaterials from the 12 devices. Similarly to invasive external communicating devices local particle release needs 13 to be considered and possible effects on draining lymph nodes. Supporting data, if 14 available, on the toxicological evaluation of nanomaterial ingredients may be used in the 15 safety evaluation of medical devices. Depending on the release, the safety evaluation of 16 the nanomaterial itself might be considered, taking into account the intended use of the 17 medical device in which the nanomaterial is used.

18

1

2

19

20

3.8.5. Specific types of medical devices

For **wound care materials,** specific considerations apply. In some wound dressings, nanosilver is used for its antibacterial activity (Wijnhoven et al., 2009, SCENIHR 2013). They are also used on breached and compromised skin. Therefore, direct contact with subcutaneous tissues including blood is possible. When there is a considerable release of the nanomaterials used in wound dressings, systemic exposure may also be possible. Hence, a more extensive risk evaluation of the nanomaterial component needs to be considered (SCENIHR 2013).

28 Dental and bone fillers and cements may contain and even consist of free 29 nanoparticles. Mostly cements and dental fillers are cured in situ resulting in a solid mass 30 of (bio)material. During the application of dental materials and also during polishing nanoparticle exposure may occur. Depending on the application site (dental use in the 31 oral cavity or orthopaedic use of bone cement), internal exposure to nanoparticles is 32 possible. For dental materials, lung exposure should also be considered (see below). This 33 34 specific potential internal exposure needs to be considered in the risk evaluation of such 35 materials.

36 For **injectable nanomaterials**, the potential of internal exposure is obvious and can be 37 rather high depending on the dose administered. For these applications, extensive 38 distribution studies are warranted. The extent of the systemic exposure is dependent on 39 the injection site. For subcutaneous injection, the distribution via the local draining lymph 40 nodes needs to be evaluated. However, further distribution should also be investigated as it cannot be assumed that further distribution beyond the local lymph node does not 41 42 occur. For other injections, systemic exposure is likely, or certain (e.g. after intravenous 43 administration) and extensive toxicokinetic and systemic toxicity studies are warranted.

44 Medical devices resulting in respiratory tract exposure. When nanomaterials are 45 used in medical devices applied in the respiratory tract, the possibility for lung exposure 46 exists. The handling of dental materials may also result in respiratory tract exposure to 47 particles (Van Oberdörster et al. 2014). Inhalation of various particles was shown to 48 consistently induce local adverse effects in the lung. Inhaled particles reach different 49 target compartments of the lung tissues depending on their size e.g. particles about 50 below 50 nm in diameter seem to be most effective in reaching the pulmonary alveoli (ICRP 1994, Cassee et al., 2002). In addition, for lung exposure of nanomaterials effects 51 52 on the cardiovascular system should also be considered (Donaldson et al. 2013a).

3.8.6. Conclusions

3 Non-invasive medical devices containing nanomaterials, with the exception of local 4 reactions at the site of contact, do not in most instances pose an additional risk 5 compared to non-invasive medical devices not containing nanomaterials and may be 6 evaluated using the same methodology.

7 For invasive medical devices containing nanomaterials, including surface contacting 8 devices in contact with breached skin or mucosa, the same principles for toxicity testing 9 apply as for medical devices not containing nanomaterials. However, the biological 10 effects of nanoparticles that are introduced or formed should be investigated both for local effects at the site of application and at possible distribution organs after migration, 11 especially draining lymph nodes. In the safety evaluation, itself the potential release, 12 accumulation, and persistence of the nanomaterials in the tissues is of utmost 13 14 importance for the need of further testing. In this context, the possible 15 dissolution/degradation of the nanomaterials also needs to be considered.

All safety evaluations should consider the potential specific physical-chemical properties of these nanomaterials, especially those medical devices that consist of free nanomaterials. The biological effects of nano-particles that are introduced should be investigated both at the site of deposition and at possible target organs for migration, especially draining lymph nodes.

In addition, the potential generation of nano-sized particles due to wear and tear needsto be considered for all implant medical devices.

23

1 2

1 4. RISK EVALUATION

2

3 An estimation of the potential risk can be made based on the information obtained on 4 nanomaterial characteristics, use as or in a medical device. The exposure can be 5 considered as the outcome of the potential release from the medical device in the actual 6 use conditions (exposure scenario) and the toxicokinetics of the nanomaterial (giving 7 indication of the possible internal exposure). The risk can be estimated based on the 8 potential exposure and the outcome of the safety testing according to ISO 10993-9 1:2009. Of major importance for the risk assessment is the possibility for release of the 10 nanomaterial from the medical device. If particle release is not present, it is assumed 11 that material and surface properties that may result in local reactions like inflammation 12 and/or induction of allergy, and which may be related to particle reactivity, are 13 adequately covered by the existing testing regimen as presented in ISO 10993-1:2009. 14 Analogously, in the absence of any absorption, no systemic toxicity testing needs to be 15 carried out.

16 A phased approach to the risk assessment related to particle release is proposed below 17 and is illustrated in the Figure 2.

- 18 19
- 19 20

Figure 2: Risk assessment of nanomaterials used in invasive medical devises: a phase approach

23

24 *Phase 1 Exposure assessment: particle release.*

25 The purpose of this first phase is to consider the likelihood that nanoparticles will be released to estimate potential exposure, either as an intrinsic property of the device or 26 27 due to wear once implanted. If there is reliable evidence that the nanomaterials are 28 embodied in the device or so well fixed that they will be retained in the device during 29 insertion, period of use and removal then, provided particles are not released as a 30 consequence of wear, no further specific risk assessment regarding the nanoparticle 31 component is required. It is important, however, that the relevant data on non-release 32 are obtained under realistic worst case conditions.

For the exposure assessment, the information as presented in section 3.5.4 Table 3 can be used. 1 If even a small release of particles is considered possible, then evaluation of the 2 physicochemical properties of the released particles is necessary. It is essential that the 3 particles studied in assays for the risk assessment are equivalent, in terms of both 4 physical and chemical properties, as those that may be released *in situ*.

- 5 Physical-chemical properties that need to be considered include:
- Solubility in water. If solubility in water is prompt then no further consideration is
 needed in regard to the particulate nature of the released material though of
 course the potential adverse effects of the solubilised material will need to be
 considered further.
- Particle size distribution and shape. The mobility of particles and the effectiveness
 of the biological defence mechanisms to deal with them is affected by both the
 size and shape of the particles.
- Ability to agglomerate and dis-agglomerate. The ability for particles to combine
 and dissociate is also a factor that affects particle size. The larger the particle size
 in biological media the less the retention of the surface active properties that are
 associated with nanoparticles.
- Other characteristics dependent on the nanomaterial used (see also ISO TR
 13014:2012)

The realistic worst case conditions for identifying the amount, estimated rate and number of released nanomaterials need to take into account the potential duration of contact of the medical device with the body. When significant exposure is expected due to nanoparticle release further investigation is necessary. The definition of what is considered to be significant is dependent on the particular type of nanomaterial.

If particle release does not occur, the further evaluation may be limited mainly to investigating local reactions. If there is significant uncertainty regarding potential release of (nano)particles then a phase 2 assessment should be embarked upon.

27 <u>Phase 2 Exposure assessment: particle distribution and persistence</u>

28 <u>i) particle distribution</u>

The primary purpose of this phase is to identify the kinetic of the particles to address the toxicity testing needed in Phase 3 (below) based on potential exposure scenarios indicated above. It is self-evident that the absorption of particles released from noninvasive medical devices into the systemic circulation and/or location of the invasive device on/in the body and contact duration will have a major influence on the potential for distribution of the particles to other organs. A further consideration is the persistence/stability of the particles in the biological media into which they are released.

36 a) Non-invasive (skin)

The key issue is to identify the likelihood of significant penetration of the skin barrier. If insignificant/negligible, then only the potential for effects at the topical site of application need to be examined in phase 3.

40 b) Invasive

Significant uptake of particles from the lung into the systemic circulation is more likely than from other external location sites. Therefore, the potential for released particles to reach the deep lung (alveolar region) and cross into the systemic circulation must be estimated. In addition, local effects in the lung itself need to be considered as most if not all particles induce lung inflammation.

Additionally, for other invasive devices the distribution of released particles needs to be
estimated, in particular, whether they remain at the site of the application of the device
(if this can be demonstrated then the potential for accumulation needs to be given

specific attention, but in principle only local toxic reactions need to be considered in the next phase). If a more general distribution may be possible, or if this is uncertain, a more in-depth evaluation of the toxicokinetics is needed.

4 For external communicating devices, e.g. dialysis equipment, the release of particles 5 entering the systemic circulation has to be followed by appropriate toxicokinetic studies.

6 *ii) <u>Particle persistence</u>*

Both the number and the duration of particle presence in a specific tissue are important
considerations affecting the likelihood of adverse effects occurring. Prolonged exposure of
a tissue to released particles may arise for two reasons:

- 10 Continuous release from the device
- 11 Stability of the particles and their entrapment in a tissue or failure of clearance 12 mechanisms.

13 The release due to the use of the device can be estimated based on short-term 14 physicochemical studies as can the likely stability of the particles. Where significant 15 release appears likely *in vivo* animal studies may be necessary to achieve adequate 16 characterisation of the internal exposure.

17 *Phase 3 Hazard assessment (toxicological evaluations).*

18 If particle release is not identified in phase 1 and/or phase 2, local effects of medical 19 devices are assumed to be adequately covered by the existing testing regimen as 20 presented in ISO 10993-1:2009.

Additional studies are necessary, if there is a significant release of particles. In deciding on the testing strategy, the likely location (as identified in phase 2) is crucial information. If it is estimated from phase 2 that it is unlikely that particles that are released will enter the systemic circulation, then only tests to establish local effects are required. It is vital in such studies that the form of the nanoparticles used in the various studies is equal to that which is actually used and present (either released or created) in biological systems

- a) Characterisation of local effects
- 28 Of particular interest are the potential for:
- Irritation

31

32

- 30 Immune reaction
 - Cytotoxicity
 - Genotoxicity
- Promotion of cell division

In principle, some of these effects (e.g. genotoxicity) may be assessed initially in *in vitro* systems as described in section 3.7.3, provided such test systems allow the penetration of the nanoparticles into the cell systems.

b) Characterisation of systemic effects

When there is exposure to a significant level of particles in one or more tissues, a caseby-case approach needs to be adopted for which the approach of Table 4 in section 3.8 can be of help. Standard toxicity tests (see section 3.7.3) are suitable to assess the hazard although particular attention should be the ability of the particles to concentrate in the draining lymph nodes and other organs of the mononuclear phagocyte system. This may require some adaptation of traditional toxicity assessment protocols.

For acute exposures, only the scope of testing would be limited to acute studies unless there is a likelihood that a similar device is likely to be used in the same patient on a number of occasions.

- 1 <u>Phase 4 Risk characterisation/risk assessment.</u>
- Based on the possibility for exposure, the following categorisation of the necessary riskassessment can be made (Table 5).

4 **Table 5: Framework for risk assessment of nanomaterials used in medical** 5 **devices**

Release of nanoparticles	Non invasive		Inva Lu	ng	Inva Ot	asive her
	Short exposure	Long exposure	Short exposure	Long exposure	Short exposure	Long exposure
Low/insignificant	N/VL*	L/F**	L	F	L	F
Medium	L/F	L/F	L/F	F	L/F	F
High	L/F	L/F	F	F	F	F

6

9 ** Full assessment when absorption is indicated in toxicokinetic studies

10 In cases where significant toxicity is found to be induced by the nanomaterial used, 11 particular attention must be given to the dose response relationship. The findings should 12 be compared against the levels of particles found in the target organs (internal exposure) 13 in order to evaluate the risk. The estimated risk may be compared to the risk from the 14 use of comparable devices not incorporating nanomaterials, and assessed according to 15 ISO 14971. In addition to the estimated potential risk, ultimately also the potential 16 benefit for the patient should be considered in the final benefit risk evaluation.

F=full assessment L=limited assessment VL =very limited or N= no further assessment
 *=limited assessment if it can be shown that penetration/distribution is very limited.

1 5. SUMMARY AND CONCLUSIONS

2

3 In the light of current knowledge, a case-by-case approach is necessary for risk 4 evaluation of medical devices containing nanomaterials. A phased approach is proposed 5 to avoid unnecessary testing.

6 In phase 1 an evaluation is needed of the potential for the device to release nanoparticles 7 either directly or due to wear of the device during use. If the nanomaterial is fully 8 embedded in the device, only the consideration of potential wear resulting in the release 9 of particles will probably be necessary. In addition, potential local effects of the device 10 incorporating nanomaterials need to be considered. For other devices containing 11 nanoparticles, both release and wear considerations are necessary. If release of particles 12 during the use of the medical device is deemed to be realistic, physicochemical tests are likely to be required to establish the nature of the released particles, the rate of release 13 and factors likely to influence this. If as a result of these studies, it is concluded that 14 15 even under realistic worst-case use conditions particle release will be very low, no further 16 consideration of the risk should be required. Further considerations are needed when a 17 substantial release is noted.

In phase 2, the aim is to determine the distribution of the particles released and also their persistence potential. In the case of non-invasive devices, the potential of particles to enter the systemic circulation and thereby, be distributed to various tissues is the prime consideration. If it is concluded that it is unlikely that the particles could enter the systemic circulation even under realistic worst-case conditions of use, then only a very limited toxicity testing protocol is needed, which would be generally limited to local effects at the contact site.

For invasive devices, a more detailed study of the potential of the particles to access and remain in specific tissues is required by toxicokinetic studies. The findings from these studies will influence the choice of further toxicity testing methods.

In phase 3, the hazard is assessed by selecting toxicity tests that are relevant based onthe nature of the observed exposure and potential persistent in specific organs.

30 In the future, as our knowledge of the properties of nanomaterials improves, it may be 31 possible to predict the nature, distribution, tissue levels and potential persistence of the 32 particles, but this is unlikely to be possible in the near future.

The information gathered will give input for the final risk characterisation (phase 4). The estimated risk needs to be compared to the risk from the use of comparable devices not incorporating nanomaterials in judging the acceptability of the risk. In addition to the estimated potential risk, ultimately also the potential benefit for the patient should be considered in the final risk assessment.

38 In conclusion, the potential risk due to the use of nanomaterials in medical devices is 39 mainly associated with the possibility for release of free nanoparticles from the device 40 and the duration of exposure. The potential release is dependent on the method of use of 41 the nanomaterials, either as free nanomaterial, nanomaterials fixed on surfaces or 42 nanomaterials embedded in a matrix. In addition to particle release and potential effects 43 of these particles, possible local effects at the site of application should also be 44 considered. It should be realised that wear and tear of a medical device may also result 45 in the generation of nano-sized particles, even when the medical device itself does not 46 contain nanomaterials.

- 1 6. MINORITY OPINION
- 2
- 3 None
- 4

7. ABBREVIATIONS AND GLOSSARY OF TERMS

Term	Explanation			
AAMI	Association for the Advancement of Medical Instrumentation			
AAS	Atomic Absorption Spectroscopy			
ABPM	Ambulatory Blood Pressure Measurements			
Absorption of energy	The way by which the energy of a photon, which is the quantum of the electromagnetic field, is taken up by matter, typically the electrons of an atom.			
ADME	Absorption, Distribution, Metabolism, and Excretion (toxicokinetics) Active implantable medical device			
AIMD				
AFM	Atomic-force microscopy			
AUC	Analytical Ultracentrifugation			
ARMD	Adverse Reaction to Metal Debris, overall description of local reactions (observed by histopathology) near metal on metal hip prostheses due to release of metal particles			
BET	Specific surface area measurements; Brunauer–Emmett– Teller (BET) theory aims to explain the physical adsorption of gas molecules on a solid surface			
CLS	Centrifugal liquid sedimentation			
DLS	Dynamic Light Scattering is a method for measuring the particle size distribution in an ensemble			
DMA	Differential mobility analysis			
EDX	Energy dispersive X-ray allows analysis of particles down to nanometre diameters			
EELS	Electron energy loss spectroscopy allows analysis of particles down to nanometre diameters			
EFSA	European Food Safety Authority			
EN 15051:2006	Procedure for determination of inhalable dustiness (dustiness values, stated as the ratio of the weight of the amount of released dust to the amount of material charged). The standard describes two methods that are based on a British method (MDHS 81) and a presently withdrawn German method (DIN 33897:2). The two methods represent different systems for supplying the mechanical energy.			
FESEM	Field Emission Scanning Electron Microscopy			
FEGSEM	Variant of FESEM, with a gun emitter			
FFF	Field-flow fractioning			

FTIR	Fourier Transform Infrared Spectroscopy
Free nanomaterial	Nanomaterials that are not encapsulated or connected in some way to prevent them from being released in the organs, tissues or cells of the user
GC-MS	Gas chromatography-mass spectrometry: the sample is usually ionized directly or indirectly by an electron beam. The high-energy electrons cause the formation of free radical ions.
HDC	Hydrodynamic chromatography
HPLC	High-performance liquid chromatography
HRTEM	High Resolution Transmission Electron Microscopy
ICP-MS	Inductively Coupled Plasma - Mass Spectrometertry
LC-MS	Liquid chromatography – mass spectrometry
LDE	Laser Doppler Electrophoresis
LLNA	Local Lymph Node Assay, murine assay to evaluate potential of chemicals for induction of delayed type hypersensitivity.
MPI MS	Magnetic Particle Imaging Mass spectrometry
Nano-object	A material with one, two or three external dimensions on a nanoscale. Nano-objects with two external dimensions on the nanoscale and a larger third dimension include nanofibres, nanotubes, nanofilaments or nanorods.
Nano-particle	A nano-object with three external dimensions on a nanoscale
Nano-reinforced materials	Nano-objects included in their matrices to introduce a new function or to alter physical and mechanical properties. Nanocomposites are a typical case.
Nanoscale	Dimensions between 1 and 100 nanometers
Nano-structured material	A material with a surface or internal structure on a nanoscale and possessing one or more new physical, chemical and biological properties specific to the nanoscale.
NMR	Nuclear Magnetic Resonance
OECD	Organisation for Economic Co-operation, Paris, France
PALS	Phase analysis light scattering (PALS configuration has been shown to be able to measure mobility at least two orders of magnitudes lower than conventional LDE)
PET	Positron emission tomography
ΡΤΑ	Particle-tracking analysis is a counting method that study particle by particle
Redox potential	A measure of the tendency of a chemical species to acquire electrons and thereby be reduced

SAR	Structure Activity Relationship
SAXS	Small-Angle X-ray Scattering reports on intensity- weighted particle size; it is in the same class of methods as DLS
SCCS	Scientific Committee on Consumer Safety
SCENIHR	Scientific Committee on Emerging and Newly Identified Health Risks
SCHER	Scientific Committee on Health and Environmental Risks
SEC	Size-exclusion chromatography
SEM	Scanning Electron Microscopy
SERS	Surface enhanced Raman Spectroscopy
SIMS	Secondary Ion Mass Spectrometry
SMPS	Scanning Mobility Particle Size
SP-ICP-MS	Single particle inductively coupled plasma mass spectrometer
SPM	Suspended particulate matter
SPM	Scanning Probe Microscopy
STEM	Scanning Transmission Electron Microscopy. Offers an alternative configuration of TEM and an extended range of analytical methods. In the STEM, as in the SEM, a finely focused electron beam is scanned across a raster on the specimen.
STM	Scanning Tunnelling Microscopy
TDI	Tolerable Daily Intake
TEGDMA	Triethylene glycol dimethacrylate
ТЕМ	Transmission Electron Microscopy
TNF	Tumour Necrosis Factor
US-EPA	United States Environmental Protection Agency
UV spectroscopy	Ultra-violet spectroscopy intended for chemical analysis
UVVis	Ultra-violet visible spectroscopy
XPS	X-ray photoelectron spectroscopy, also known as ESCA
X-ray absorption spectroscopy	A technique for determining the local geometric and/or electronic structure of matter
XRD	X-Ray Diffraction is a method for measurement of an average size value without giving information about the size distribution

1 8. REFERENCES

2

Abid AD, Anderson DS, Das GK, Van Winkle LS, Kennedy IM. (2013) Novel lanthanidelabeled metal oxide nanoparticles improve the measurement of *in vivo* clearance and translocation. Part Fibre Toxicol 10:1.

Afssaps (Agence française de sécurité sanitaire des produits de santé) (2011) Biological
assessment of medical devices containing nanomaterials – Scientific Report (19.8.2011)

- 8 http://www.afssaps.fr/Activites/Surveillance-du-marche-des-dispositifs-medicaux-et-
- 9 dispositifs-medicaux-de-diagnostic-in-vitro-DM-DMDIV/Dispositifs-medicaux-Operations-
- 10 d-evaluation-et-de-controle-du-marche/Dispositifs-medicaux-Operations-d-evaluation-et-
- 11 de-controle/Evaluation-biologique-des-dispositifs-medicaux-contenant-des-
- 12 nanomateriaux

Aggarwal P, J. B. Hall, C. B. McLeland, M. A. Dobrovolskaia and S. E. McNeil, (2009).
Nanoparticle interaction with plasma proteins as it relates to particle biodistribution,
biocompatibility and therapeutic efficacy. Adv. Drug Delivery Rev., 61, 428–437.

Allouni ZE, Cimpan MR, Høl PJ, Skodvin T, Gjerdet NR.(2009). Agglomeration and
sedimentation of TiO2 nanoparticles in cell culture medium. Colloids Surf B Biointerfaces.
68, 83-87.

Balasubramanian SK, Poh K-W, Ong C-N, Kreyling WG, Ong W-Y, Yu LE. (2013) The
effect of primary particle size on biodistribution of inhaled gold nano-agglomerates.
Biomaterials 34, 5439-5452.

Basketter D, Alépée N, Casati S, Crozier J, Eigler D, Griem P, Hubesch B, De Knecht J,
Landsiedel R, Louekari K, Manou I, Maxwell G, Mehling A, Netzeva T, Petry T, Rossi LH.
(2013). Skin sensitisation – Moving forward with non-animal testing strategies for
regulatory purposes in the EU. Regul Toxicol Pharmacol 67, 531-535.

Burello E, Worth AP. (2011). A theoretical framework for predicting the oxidative stress
potential of oxide nanoparticles. Nanotoxicology. 5, 228-235.

Butz T, Reinert T, Pinheiro T, Moretto P, Pallon J, Kiss AZ, Stachura J, D, abro's W,
Stachura Z, Lekki J, Lekka M, Hunyadi J, Biro T, Sticherling M, Van Vaeck L, Van Royen
P, Surleve-Bazeille JE. (2007) NANODERM, Quality of Skin as a Barrier to ultra-fine
Particles, QLK4-CT-2002-02678 Final Report.

32 http://www.uni-leipzig.de/~nanoderm/Downloads/Nanoderm_Final_Report.pdf

Cassee FR, Muijser H, Duistermaat E, Freijer JJ, Geerse KB, Marijnissen JCM, Arts JHE
 (2002). Particle size-dependent total mass deposition in lungs determines inhalation
 toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry
 model. Arch Toxicol 76, 277-286.

- Chaloupka K, Malam Y, Seifalian AM. (2010). Nanosilver as a new generation of
 nanoproduct in biomedical applications. Trends Biotechnol. ;28, 580-588.
- Champion JA, Mitragotri S. (2006). Role of target geometry in phagocytosis. Proc NatlAcad Sci U S A. 103, 4930-4934. .
- Clift MJD, Raemy DO, Endes C, Ali Z, Lehmann AD, Brandenberger C, et al (2013). Can
 the Ames test provide an insight into nano-object mutagenicity? Invesyigating the
 interaction between nano-objects and bacteria. Nanotoxicology 7, 1373-1385

Cockburn A, Bradford R, Buck N, Constable A, Edwards G, Haber B, Hepburn P, Howlett J,
Kampers F, Klein C, Radomski M, Stamm H, Wijnhoven S, Wildemann T. (2012).
Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food
Chem Toxicol. 50, 2224-2242.

48 Corradi S, Gonzalez L, Thomassen LC, Bilaničová D, Birkedal RK, Pojana G, Marcomini 49 A, Jensen KA, Leyns L, Kirsch-Volders M. (2012). Influence of serum on in situ

- proliferation and genotoxicity in A549 human lung cells exposed to nanomaterials. Mutat
 Res. 2012 Jun 14;745(1-2):21-7. doi: 10.1016/j.mrgentox.2011.10.007. Epub 2011 Oct
 19.
- 4 Crist RM, Hall Grossman J, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP,
 5 Clogston JD, McNeil SE. (2013) Common pitfalls in nanotechnology: lessons learned from
 6 NCI's Nanotechnology Characterization Laboratory. Integr. Biol. 5, 66-73
- 7 Dearnaley G, Arps JH. (2005) Biomedical applications of diamond-like carbon (DLC) 8 coatings: A review. Surface & Coatings Technology. 200, 2518-2524.
- 9 De Jong, W.H., Hagens, W.I., Krystek, P., Burger, M.C., Sips, A.J.A.M., and Geertsma, 10 R.E. (2008). Particle size dependent organ distribution of gold nanoparticles after 11 intravenous administration. Biomaterials 29, 1912-1919.
- Demoy, M., Gibaud, S., Andreux, J.P., Weingarten, C., Gouritin, B., Couvreur, P. (1997).
 Splenic trapping of nanoparticles: complementary approaches for in situ studies. Pharm
 Res 14, 463-468.
- Doak SH, Manshian B, Jenkins GJS, Singh N. (2012) *In vitro* genotoxicity testing strategy
 for nanomaterials and the adaptation of current OECD guidelines. Mutation Res/Genetic
 Toxicol Environm Mutagenesis 745, 104-111.
- Donaldson K, Duffin R, Langrish JP, Miller MR, Mills NL, Poland CA, et al. (2013a)
 Nanoparticles and the cardiovascular system: a critical review. Nanomedicine (Lond). 8,
 403-423.
- Donaldson K, Schinwald, A., Murphy, F., Cho, W.-S., Duffin, R., Tran, L., Poland, C.
 (2013b) The Biologically Effective Dose in Inhalation Nanotoxicology Acc. Chem. Res.,
 46, pp 723–732 (DOI: 10.1021/ar300092y
- Dusinska M, Dusinska M, Fjellsbø L, Magdolenova Z, Rinna A, Runden Pran E et al.,
 (2009). Testing strategies for the safety of nanoparticles used in medical applications.
 Nanomedicine (Lond).4, 605-607.
- Dutz S, Hergt R. (2013) Magnetic nanoparticle heating and heat transfer on a microscale:
 basic principles, realities, and physical limitations of hyperthermia for tumour therapy.
 Int J Hyperthermia 29, 790-800.
- Eastmond DA, Hartwig A, Anderson D, Anwar WA, Cimino MC, Dobrev I, Douglas GR,
 Nohmi T, Phillips DH, Vickers C. (2009). Mutagenicity testing for chemical risk
 assessment: update of the WHO/IPCS Harmonized Scheme. Mutagenesis. 24, 341-349.
- 33 EFSA (2011) Guidance on the risk assessment of the application of nanoscience and34 nanotechnologies in the food and feed chain. EFSA Journal 9, 2140.
- Engheta N, Ziolkowski RW (2006). Metamaterials: Physics and Engineering Explorations.
 Wiley & Sons. pp. xv, 3–30, 37, 143–150, 215–234, 240–256. ISBN 978-0-471-76102-
- 37 0}.
- 38 EC (European Commission) (2011) Commission recommendation of 18 October 2011 on
 39 the definition of nanomaterial (2011/696/EU). Official Journal of the European Union
 40 L275/38, 20.10.2011.
- 41 EC (European Commission)(1993). Council Directive 93/42/EEC of 14 June 1993 42 concerning medical devices. Official Journal L169, 12/07/1993 P. 0001 – 0043.
- EC (European Commission) (2007) Directive 2007/47/EC of the European Parliament and of the Council of 5 September 2007 amending Council Directive 90/385/EEC on the approximation of the laws of the Member States relating to active implantable medical devices, Council Directive 93/42/EEC concerning medical devices and Directive 98/8/EC concerning the placing of biocidal products on the market. Officila Journal of the European Union L247/21, 21.9.2007.

- 1 EC (European Commission) (2008). No 440/2008 of 30 May 2008 laying down test 2 methods pursuant to Regulation (EC) No 1907/2006 of the European Parliament and of
- 2 methods pursuant to Regulation (EC) No 1907/2006 of the European Parliament and of 3 the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals
- 4 (REACH).
- 5 EC (European Commission) (2012). Proposal for a REGULATION OF THE EUROPEAN 6 PARLIAMENT AND OF THE COUNCIL on medical devices, and amending Directive
- 7 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009. European
 8 Commission, Brussels, 26.9.2012, COM(2012) 542 final. 2012/0266 (COD).
- 9 http://ec.europa.eu/health/medical-
- 10 devices/files/revision_docs/proposal_2012_542_en.pdf
- 11 ETP (2009). Nanomedicine. Roadmaps in nanomedicine towards 2020. Downloadable
- 12 from: http://www.etp-nanomedicine.eu/public/press-documents/publications/etpn-13 publications
- Fabian, E., Landsiedel, R., Ma-Hock, L., Wiench, K., Wohlleben, W., Van Ravenzwaay, B.
 (2008) Tissue distribution and toxicity of intravenously administered titanium dioxide
 nanoparticles in rats. Arch. Toxicol. 82,151–157.
- 17 Ferracane JL.(2011) Resin composite--state of the art. Dent Mater. 27, :29-38
- 18 Geertsma RE, Roszek BR, Herberts CA, Brouwer N. (2009) Nanotechnology in medical
- 19 applications. In: M. van Zijverden, A.J.A.M. Sips (Eds.). Nanotechnology in perspective:
- 20 Risks to man and the environment. RIVM Rapport 601785003/2009.
- http://www.rivm.nl/Documenten_en_publicaties/Wetenschappelijk/Rapporten/2009/augu
 stus/Nanotechnology_in_perspective_Risks_to_man_and_the_environment?sp=cml2bXE
 9ZmFsc2U7c2VhcmNoYmFzZT01MTk3MDtyaXZtcT1mYWxzZTs=&pagenr=5198
- 24 Geiser M, Kreyling WG.(2010) Deposition and biokinetics of inhaled nanoparticles. Part 25 Fibre Toxicol. 7:2.
- Gibaud S, Demoy M, Andreux JP, Weingarten C, Gouritin B, Couvreur P. (1996) Cells Involved in the Capture of Nanoparticles in Hematopoietic Organs. J Pharmaceut Sc 85, 944-950.
- Gill HS, Grammatopoulos G, Adshead S, Tsialogiannis E, Tsiridis E., Molecular and
 immune toxicity of CoCr nanoparticles in MoM hip arthroplasty, Trends Mol Med. 2012
 Mar;18(3):145-155
- 32 Gulson B, McCall M, Korsch M, Gomez L, Casey P, Oytam Y, Taylor A, McCulloch M, 33 Trotter J, Kinsley L, Greenoak G. (2010) Small amounts of zinc from zinc oxide particles 34 in sunscreens applied outdoors are absorbed through human skin Toxicol Sc 118, 140-35 149.
- Ho CH, Odermatt EK, Berndt I, Tiller JC. (2013) Long-term active antimicrobial coatings
 for surgical sutures based on silver nanoparticles and hyperbranched polylysine. Journal
 of Biomaterials Science-Polymer Edition. 24, 1589-1600.
- Honda M, Asai T, Oku N, Araki Y, Tanaka M, Ebihara N. (2013) Liposomes and
 nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine 8,
 495-504.
- 42 ICCR (International Cooperation on Cosmetics Regulation) (2011) Currently available
 43 methods for characterization of nanomaterials, ICCR Report of the Joint Regulator 44 Industry Ad Hoc Working Group.
- 45 http://ec.europa.eu/consumers/sectors/cosmetics/files/pdf/iccr5_char_nano_en.pdf
- ICRP (International Committee on Radiological Protection) (1994) Human Respiratory
 Tract Model for Radiological Protection. ICRP Publication 66, Ann. ICRP 24 (1-3).
- 48 http://www.icrp.org/publication.asp?id=ICRP%20Publication%2066

- ISO 10993-1:2009. Biological evaluation of medical devices -- Part 1: Evaluation and 1 2 testing within a risk management process. ISO, Geneva, Switzerland.
- 3 ISO 10993-3:2003. Biological evaluation of medical devices -- Part 3: Tests for genotoxicity, carcinogenicity and reproductive toxicity. ISO, Geneva, Switzerland. 4
- 5 ISO 10993-4:2002, Biological evaluation of medical devices -- Part 4: Selection of tests 6 for interactions with blood. ISO 10993-4:2002/Amd 1:2006. ISO, Geneva, Switzerland.
- 7 ISO 10993-5:2009. Biological evaluation of medical devices -- Part 5: Tests for in vitro 8 cytotoxicity. ISO, Geneva, Switzerland.
- 9 ISO 10993-6:2007. Biological evaluation of medical devices -- Part 6: Tests for local effects after implantation. ISO, Geneva, Switzerland. 10
- 11 ISO 10993-9:2009. Biological evaluation of medical devices - Part 9: Framework for identification and quantification of potential degradation products. ISO, Geneva, 12 13 Switzerland
- ISO 10993-10:2010. Biological evaluation of medical devices -- Part 10: Tests for 14 irritation and skin sensitization. ISO, Geneva, Switzerland. 15
- 16 ISO 10993-11:2006. Biological evaluation of medical devices -- Part 11: Tests for systemic toxicity. ISO, Geneva, Switzerland. 17
- ISO 10993-12:2012. Biological evaluation of medical devices -- Part 12: Sample 18 19 preparation and reference materials. ISO, Geneva, Switzerland.
- 20 ISO 10993-13:2010. Biological evaluation of medical devices – Part 13: Identification 21 and quantification of degradation products from polymeric medical devices. ISO, Geneva, 22 Switzerland
- 23 ISO 10993-14:2001. Biological evaluation of medical devices - Part 14: Identification and quantification of degradation products from ceramics. ISO, Geneva, Switzerland 24
- 25 ISO 10993-15:2000. Biological evaluation of medical devices – Part 15: Identification 26 and quantification of degradation products from metals and alloys. ISO, Geneva, 27 Switzerland
- 28 ISO 10993-16:2010. Biological evaluation of medical devices -- Part 16: Toxicokinetic 29 study design for degradation products and leachables. ISO, Geneva, Switzerland.
- ISO 10993-17:2002. Biological evaluation of medical devices -- Part 17: Establishment of 30 allowable limits for leachable substances. ISO, Geneva, Switzerland. 31
- 32 ISO 10993-18:2005. Biological evaluation of medical devices -- Part 18: Chemical characterization of materials. ISO, Geneva, Switzerland 33
- 34 ISO 10993-19:2006. Biological evaluation of medical devices -- Part 19: Physico-35 chemical, morphological and topographical charcaterization of materials. ISO, Geneva, Switzerland. 36
- 37 ISO/TR 13014:2012. Nanotechnologies -- Guidance on physico-chemical characterization 38 of engineered nanoscale materials for toxicologic assessment. ISO, Geneva, Switzerland.
- 39 ISO 14971:2007. Medical devices -- Application of risk management to medical devices. ISO, Geneva, Switzerland 40
- 41 Jang YS, Lee EY, Park Y-H, Jeong SH, Lee SG, Kim Y-R, Kim M-K, Son SW. (2012) The 42 potential for skin irritation, phototoxicity, and sensitization of ZnO nanoparticles Mol Cell
- 43 Toxicol 8, 171-177.
- Jani, P., Halbert, G.W., Langridge, J., and Florence, A.T. (1990). The uptake and 44
- 45 translocation of latex nanospheres and microspheres after oral administration to rats. J.
- 46 Pharm. Pharmacol. 42, 821-826.

Jani, P.U., McCarthy, D.E., Florence, A.T. (1994) Titanium dioxide (rutile) particle uptake
 from the rat GI tract and translocation to systemic organs after oral administration. Int.
 J. Pharmaceutics 105, 157-168.

Kim, Y.S., Kim, J.S., Cho, H.S., Rha, D.S., Kim, J.M., Park, J.D., Choi, B.S., Lim, R.,
Chang, H.K., Chung, Y.H., Kwon, I.H., Jeong, J., Han, B.S., and Yu, I.J. (2008). TwentyEight-Day Oral Toxicity, Genotoxicity, and Gender-Related Tissue Distribution of Silver
Nanoparticles in Sprague-Dawley Rats. Inhal Toxicol 20, 575–583.

Kostoryz EL, Utter CJ, Wang Y, Dusevich V, Spencer P. (2007). Cytotoxici- ty of Dental
Nanocomposite Particles. Technical Proceedings of the 2007 NSTI Nanotechnology
Conference and Trade Show. Austin, Texas: Nano Science and Technology Institute; 2,
647-650.

- Kreyling, W.G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., Oberdörster,
 G., and Ziesenis, A. (2002). Translocation of ultrafine insoluble iridium particles from
 lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol
 Environ Health, Part A 65, 1513–1530.
- 16 Kreyling WG, Semmler-Behnke M, Chaudhry Q (2010) A complementary definition of 17 nanomaterial. Nano Today 5, 165-168.
- Labouta HI, Schneider M. (2013) Interaction of inorganic nanoparticles with the skin
 barrier: current status and critical review. Nanomedicine-Nanotechnology Biology and
 Medicine. 9, 39-54.
- Landsiedel R, Kapp MD, Schulz M, Wiench K, Oesch F. (2009). Genotoxicity investigations
 on nanomaterials: methods, preparation and characterization of test material, potential
- artifacts and limitations--many questions, some answers. Mutat Res. 68, 241-258.
- Lankveld, D.P.K., Oomen, A.G., Krystek, P., Neigh, A., Troost-de Jong, A., Noorlander, C.W., Van Eijkeren, J.C.H., Geertsma, R.E., and De Jong, W.H. (2010) The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31, 8350-8361.

Lankveld, D.P.K., Rayavarapu, R.G., Krystek, P., Oomen, A.G., Verharen, H.W., Van
Leeuwen, T.G., De Jong, W.H., and Manohar, S. (2011). Blood clearance and tissue
distribution of pegylated and non-pegylated gold nanorods after intravenous
administration in rats. Nanomedicine 6, 339-349.

- Larese Filon F, D'Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, Maina G. (2009).
 Human skin penetration of silver nanoparticles through intact and damaged skin.
 Toxicology 255, 33-37.
- Larsen ST, Roursgaard M, Jensen KA, Nielsen GD. (2010) Nano Titanium Dioxide Particles
 Promote Allergic Sensitization and Lung Inflammation in Mice. Basic & Clin Pharmacol &
 Toxicol 106:114-117.
- Lee J-M, Salvati EA, Betts F, DiCarlo EF, Doty SB, Bullough PG. (1992). Size of metallic
 and polyethym]lene debris particles in failed cemented total hip replacements. J Bone
 Joint Surgery 74B, 380-384.
- 40 Lee S, Yun H-S, Kim S-H. (2011). The comparative effects of mesoporous silica 41 nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials 32, 9434-42 9443.
- Lenaerts, V., Nagelkerke, J. F., Van Berkel, T. J. C., Couvreur, P., Grislain, L., Roland, M.
 and Speiser, P. (1984), *In vivo* uptake of polyisobutyl cyanoacrylate nanoparticles by rat
 liver Kupffer, endothelial, and parenchymal cells. Journal of Pharmaceutical Sciences, 73:
 980–982. doi: 10.1002/jps.2600730730

47 Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A. (2012)Effects of the 48 presence or absence of a protein corona on silica nanoparticle uptake and impact on 49 cells. ACS Nano. 6, 5845-5857.

- Linsinger T.P.J., Roebben G., Gilliland D., Calzolai L., Rossi F., Gibson N., Klein C. (2012)
 Requirements on measurements for the implementation of the European Commission
- 3 definition on the term "nanomaterial", JRC Reference Reports, July 2012
- 4 Lipka, J., Semmler-Behnke, M., Sperling, R.A., Wenk, A., Takenaka, S., Schleh, C.,
- 5 Kissel, T., Parak, W.J., and Kreyling, W.G. (2010). Biodistribution of PEG-modified gold
- 6 nanoparticles following intratracheal instillation and intravenous injection. Biomaterials7 31, 6574-6581.
- 8 Löffler B (2013) News from the European Foundation for Nanomedicine (CLINAM) Eur. J.
 9 Nanomed. 5(1): 9.
- Lovric J, H. S. Bazzi, Y. Cuie, G. R. Fortin, F. M. Winnik and D. Maysinger(2005),
 Differences in subcellular distribution and toxicity of green and red emitting CdTe
 quantum dots. J. Mol. Med., 83, 377–385.
- Lu Z, Y. Qiao, X. T. Zheng, M. B. Chan-Park and C. M. Li (2010).Effect of particle shape on phagocytosisof CdTe quantum dot–cystine composites. MedChemComm, 1, 84–86.
- 15 Lynch I, Dawson KA (2008). Protein-nanoparticle interactions. Nano Today 3, 40-47.
- 16 Lynch I, Salvati A. Dawson KA. (2009). Protein-nanoparticle interactions: What does the 17 cell see? Nat Nanotechnol 4, 546-547.
- 18 Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. (2014) Mechanisms
- of genotoxicity. A review of *in vitro* and *in vivo* studies with engineered nanoparticles.Nanotoxicology 8, 233-278.
- 21 Magdolenova Z, Lorenzo Y, Collins A, Dusinska M. (2012). Can standard genotoxicity 22 tests be applied to nanoparticles? J Toxicol Environ Health A Part A 75:1–7.
- Mailander V, Landfester K. (2009). Interaction of nanoparticles with cells.
 Biomacromolecules, 10, 2379–2400.
- Maiorano G, Sabella S, Sorce B, Brunetti V, Malvindi MA, Cingolani R, Pompa PP (2010).
 Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes
 and influence on the cellular response. ACS Nano. 4, 7481-791.
- 28 Melnik EA, Yu. P. Buzulukov, V. F. Demin, V. A. Demin, I. V. Gmoshinski, N. V. Tyshko, 29 and V. A. Tutelyan (2013) Transfer of Silver Nanoparticles through the Placenta and 30 Breast Milk during *in vivo* Experiments on Rats. Acta Naturae. 5, 107–115.
- Mercanzini, S.T. Reddy, D. Velluto, Ph. Colin, A. Maillard, J.-C. Bensadoun, J.A. Hubbell,
 Ph. Renaud (2010). Controlled release nanoparticle-embedded coatings reduce the tissue
 reaction to neuroprostheses, J. Control. Release 145, 196–202.
- Mohammed N, Rejinold NS, Mangalathillam S, Biswas R, Nair SV, Jayakumar R (2013) Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections. J Biomed Nanotechnol 9, 1521-1531.
- Monteiro-Riviere NA, Inman AO, Zhang LW. (2009a). Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol. 234, 222-235.
- Monteiro-Riviere NA, Larese Filon F. (2012). Skin. In: Adverse effects of engineered
 nanomaterials, 1st Edition. Exposure, Toxicology, and impact on human health. Eds:
 Fadeel B, Pietroiusti A, Shvedova AA. Elsevier, Amsterdam, London, New York.
- 43 Monteiro-Riviere NA. Riviere JE.(2009b) Interaction of nanomaterials with skin: Aspects 44 of absorption and biodistribution, Nanotoxicology, 3: 3, 188 — 193,
- Nanogenotox (2013) Nanogenotox: Facilitating the safety evaluation of manufactured
 nanomaterials by characterizing their potential genotoxic hazard. Project coordinator

- French Agency for Food, environmental and Occupational Helath and Safety (ANSES),
 Paris, france. http://www.nanogenotox.eu/files/PDF/nanogenotox_web.pdf
- Natu S, Sidaginamale RP, Gandhi J, Langton DJ, Nargol AV (2012) Adverse reactions to
 metal debris: histopathological features of periprosthetic soft tissue reactions seen in
 association with failed metal on metal arthroplasties. J Clin Pathol 65, 409-418

Nel, A.E., Mädler, L., Velegol, D., Xia1, T., Hoek, E.M.V., Somasundaran, P., Klaessig, F.,
Castranova, V., and Thompson, M. (2009). Understanding biophysicochemical
interactions at the nano-bio interface. Nature Mater 8, 543-557.

Nel AE, Nasser E, Godwin H, Avery D, Bahadori T, Bergeson L, Beryt E, Bonner JC,
Boverhof D, Carter J, Castranova V, Deshazo JR, Hussain SM, Kane AB, Klaessig F,
Kuempel E, Lafranconi M, Landsiedel R, Malloy T, Miller MB, Morris J, Moss K, Oberdorster
G, Pinkerton K, Pleus RC, Shatkin JA, Thomas R, Tolaymat T, Wang A, Wong J. (2013a).
A multi-stakeholder perspective on the use of alternative test strategies for nanomaterial
safety assessment. ACS Nano. 7, 6422-6433.

- Nel AE, Xia T, Meng H, Wang X, Lin SJ, Ji ZX, et al. (2013b) Nanomaterial Toxicity
 Testing in the 21st Century: Use of a Predictive Toxicological Approach and HighThroughput Screening. Accounts of Chemical Research. 46, 607-621.
- 18 Niidome T, Yamagata M, Okamoto Y et al (2006). PEG-modified gold nanorods with a 19 stealth character for *in vivo* application. J. Control. Release 114, 343–347.
- 20 Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: 21 concepts of nanotoxicology. J Intern Med 167, 89-105.
- Oberdörster G, Sharp Z, Atudori V, Elder A, Gelein R, Kreyling W, Cox C. (2004)
 Translocation of inhaled ultrafine particles tot eh brain. Inhalation Toxicol 16, 437-445.
- 24 OECD 402: Acute Dermal Toxicity. OECD, Paris, France (1987)
- 25 OECD 403: Acute Inhalation Toxicity. OECD, Paris, France (2009)
- 26 OECD 404: Acute Dermal Irritation/Corrosion. OECD, Paris, France (2002)
- 27 OECD 405: Acute Eye Irritation/Corrosion. OECD, Paris, France (2012)
- 28 OECD 406: Skin Sensitisation. OECD, Paris, France (1992)
- OECD 407: Repeated Dose 28-day Oral Toxicity Study in Rodents. OECD, Paris, France(2008)
- 31 OECD 408: Repeated Dose 90-Day Oral Toxicity Study in Rodents. OECD, Paris, France32 (1998)
- 33 OECD 409: Repeated Dose 90-Day Oral Toxicity Study in Non-Rodents. OECD, Paris,
 34 France (1998)
- 35 OECD 411: Subchronic Dermal Toxicity 90-day Study. OECD, Paris, France (1981)
- 36 OECD 412: Subacute Inhalation Toxicity: 28-Day Study. OECD, Paris, France (2009)
- 37 OECD 413: Subchronic Inhalation Toxicity: 90-day Study. OECD, Paris, France (2009)
- 38 OECD 414: Prenatal Development Toxicity Study. OECD, Paris, France (2001)
- 39 OECD 415: One-Generation Reproduction Toxicity Study. OECD, Paris, France (1983)
- 40 OECD 416: Two-Generation Reproduction Toxicity. OECD, Paris, France (2001)
- 41 OECD 417: Toxicokinetics. OECD, Paris, France (2010)
- 42 OECD 420: Acute Oral Toxicity Fixed Dose Procedure. OECD, Paris, France (2002)
- 43 OECD 421: Reproduction/Developmental Toxicity Screening Test. OECD, Paris, France
- 44 (2002)

- OECD 422: Combined Repeated Dose Toxicity Study with the eproduction/Developmental
 Toxicity Screening Test. OECD, Paris, France (1996)
- 3 OECD 423: Acute Oral toxicity Acute Toxic Class Method. OECD, Paris, France (2002)
- 4 OECD 425: Acute Oral Toxicity: Up-and-Down Procedure. OECD, Paris, France (2008)
- 5 OECD 427: Skin Absorption: *In vivo* Method. OECD, Paris, France (2004)
- 6 OECD 428: Skin Absorption: *In vitro* Method. OECD, Paris, France (2004)
- 7 OECD 429: Skin Sensitisation. OECD, Paris, France (2010)
- 8 OECD 430: *In vitro* Skin Corrosion: Transcutaneous Electrical Resistance Test Method 9 (TER). OECD, Paris, France (2013)
- 0ECD 431: *In vitro* Skin Corrosion: Reconstructed Human Epidermis (RHE) Test Method.
 0ECD, Paris, France (2013)
- 12 OECD 436: Acute Inhalation Toxicity Acute Toxic Class Method. OECD, Paris, France(2009)
- OECD 437. Bovine Corneal Opacity and Permeability Test Method for Identifying i)
 Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification
 for Eye Irritation or Serious Eye Damage. OECD, Paris, France (2013)
- 17 OECD 438: Isolated Chicken Eye Test Method for Identifying i) Chemicals Inducing 18 Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or 19 Serious Eye Damage. OECD, Paris, France (2013)
- 20 OECD 439: *In vitro* Skin Irritation Reconstructed Human Epidermis Test Method. OECD, 21 Paris, France (2013)
- 22 OECD 442A: Skin Sensitization. OECD, Paris, France (2010)
- 23 OECD 442B: Skin Sensitization. OECD, Paris, France (2010)
- OECD 443: Extended One-Generation Reproductive Toxicity Study. OECD, Paris, France(2012)
- 26 OECD 451: Carcinogenicity Studies. OECD, Paris, France (2009)
- 27 OECD 452: Chronic Toxicity Studies. OECD, Paris, France (2009)
- 28 OECD 453: Combined Chronic Toxicity/Carcinogenicity Studies. OECD, Paris, France 29 (2009)
- 30 OECD 460: Fluorescein Leakage Test Method for Identifying Ocular Corrosives and
 31 Severe Irritants. OECD, Paris, France (2012)
- 32 OECD 471: Bacterial Reverse Mutation Test. OECD, Paris, France (1997)
- 33 OECD 473: *In vitro* Mammalian Chromosome Aberration Test. OECD, Paris, France 34 (1997)
- 35 OECD 474: Mammalian Erythrocyte Micronucleus Test. OECD, Paris, France (1997)
- 36 OECD 475: Mammalian Bone Marrow Chromosome Aberration Test. OECD, Paris, France37 (1997)
- 38 OECD 476: In vitro Mammalian Cell Gene Mutation Test. OECD, Paris, France (1997)
- 39 OECD 483: Mammalian Spermatogonial Chromosome Aberration Test. OECD, Paris,40 France (1997)
- 41 OECD 487: *In vitro* Mammalian Cell Micronucleus Test. OECD, Paris, France (2010)
- 42 OECD 488: Transgenic Rodent Somatic and Germ Cell Gene Mutation Assays. OECD,
- 43 Paris, France (2013)

- 1 OECD (2012). GUIDANCE ON SAMPLE PREPARATION AND DOSIMETRY FOR THE SAFETY 2 TESTING OF MANUFACTURED NANOMATERIALS. ENV/JM/MONO(2012)40. Series on the 3 Safety of Manufactured Nanomaterials No. 36. OECD, Paris, France.
- Osmond-McLeod MJ, Oytam Y, Kirby JK, Gomez-Fernandez L, Baxter B, McCall MJ.
 (2013) Dermal absorption and short term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles. Nanotoxicology Early Online 1-13.- DOI: 10.3109/17435390.2013.855832
- Park, E.J., Bae, E., Yi, J., Kim, Y., Choi, K., Lee, S.H., Yoon, J., Lee, B.C., and Park, K.
 (2010a). Repeated-dose toxicity and inflammatory responses in mice by oral
 administration of silver nanoparticles. Environ Toxicol Pharmacol 30, 162–168.
- Park EJ, Yi J, Kim Y, Choi K, Park K. (2010b). Silver nanoparticles induce cytotoxicity by a
 Trojan-horse type mechanism. Toxicol *In vitro* 24, 872-878.
- Park MVDZ, Annema W, Salvati A, lesniak A, Elsaesser A, Barnes C. McKerr G, Howard
 CV, Lynch I, dawson K, Piersma AH, De Jong WH. (2009). *In vitro* developmental toxicity
 test detects inhibition of stem cell differentiation by silica nanoparticles. Toxicol Appl
 Pharmacol 240, 108-116.
- 17 Park MVDZ, Lankveld, DPK, van Loveren, H., De Jong, WH. (2009). The status of *in vitro* 18 toxicity studies in risk assessment of nanomaterials Nanomedicine 4, 669-685.
- Park MVDZ, Neigh AM, Vermeulen JP, De La Fonteyne LJJ, Verharen HW, Briedé JJ, Van
 Loveren H, De Jong WH. (2011) The effect of particle size on the cytotoxicity,
 inflammation, developmental toxicity and genotoxicity of silver nanoparticles.
 Biomaterials 32, 9810-9817.
- Park Y-H, Bae HC, Jang Y, Jeong SH, Lee HN, Ryu W-I et al.(2013). Effect of the size and
 surface charge of silica nanoparticles on cutaneous toxicity. Mol Cell Toxicol 9, 67-74.
- Pauluhn, J. (2009) Retrospective analysis of 4-week inhalation studies in rats with focus
 on fate and pulmonary toxicity of two nanosized aluminum oxyhydroxides (boehmite)
 and pigment-grade iron oxide (magnetite): The key metric of dose is particle mass and
 not particle surface area. Toxicology 259, 140-148.
- Pauluhn, J. (2011) Poorly soluble particulates: Searching for a unifying denominator of
 nanoparticles and fine particles for DNEL estimation. Toxicology 279, 176-188
- Polyzois I, Nikolopoulos D, Michos I, Patsouris E, Theocharis S. (2012) Local and
 systemic toxicity of nanoscale debris particles in total hip arthroplasty. J Appl Toxicol. 32,
 255-269.
- Proykova A, Markus Baer, Jorgen Garnaes, Carl Frase, Ludger Koenders, Nanometrology
 Status and Future Needs Within Europe, (2011) (ISBN: 978-0-9566809-6-9)
 http://www.euspen.eu/page1418/Resources/Modelling-Simulation-Proceedings
- Puranik AS, Dawson ER, Peppas NA. (2013) Recent advances in drug eluting stents.International Journal of Pharmaceutics. 441, 665-679.
- Puzyn T, Leszczynska D, Leszczynski J. (2009). Toward the development of "Nano QSARs": Advances and challenges. Small, 5, 2494–2509.
- Puzyn T, Rasulev B, Gajewicz A, Hu X, Dasari TP, Michalkova A, Hwang HM, Toropov A,
 Leszczynska D, Leszczynski J. (2011). Using nano-QSAR to predict the cytotoxicity of
 metal oxide nanoparticles. Nat Nanotechnol. 6, 175-178.
- Rai M, Kon K, Ingle A, Duran N, Galdiero S, Galdiero M. (2014). Broad-spectrum
 bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl
 Microbiol Biotechnol. ;98, 1951-1961.
- 47 Rai M, Yadav A, Gade A. (2009). Silver nanoparticles as a new generation of 48 antimicrobials, Biotechnol Adv. 27, 76-83.

- Roszek B, Jong WH de, Geertsma RE. Nanotechnology in medical applications: State-of the-art in materials and devices. RIVM-report 265001 001, 2005.
- http://www.rivm.nl/en/Documents_and_publications/Scientific/Reports/2005/oktober/Na
 notechnology_in_medical_applications_state_of_the_art_in_materials_and_devices
- 5 Sadauskas, E., Wallin, H., Stoltenberg, M., Vogel, U., Doering, P., Larsen, A., and 6 Danscher, G. (2007). Kupffer cells are central in the removal of nanoparticles from the 7 organism. Part Fibre Toxicol 4, 10.
- 8 Sadrieh N, Wokovich AM, Gopee NV, Zheng J, Haines D, Parmiter D, Siitonen PH, Cozart
 9 CR, Patri AK, McNeil SE, Howard PC, Doub WH, Buhse LF. (2010) Lack of Significant
 10 Dermal Penetration of Titanium Dioxide from Sunscreen Formulations Containing Nano11 and Submicron-Size TiO2 Particles Tox Sc 115, 156–166.
- 12 Sayes C, Ivanov I.(2010). Comparative study of predictive computational models for 13 nanoparticle-induced cytotoxicity. Risk Anal. 30, 1723-1734.
- 14SCCS (2012) Guidance on the safety assessment of nanomaterials in cosmetics. SCCS,15EuropeanCommission,Brussels,Belgium.
- 16 http://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_005.pdf
- 17 SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks) (2006)
- 18 The appropriateness of existing methodologies to assess the potential risks associated
- with engineered and adventitious products of nanotechnologies, European Commission,Brussels, Belgium.
- 21 http://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/scenihr_o_003b 22 .pdf
- 23 SCENIHR (Scientific Committee on Emerging and Newly-Identified Health Risks) (2007)
- The appropriateness of the risk assessment methodology in accordance with the Technical Guidance Documents for new and existing substances for assessing the risks of
- 26 nanomaterials, European Commission, Brussels, Belgium.
- http://ec.europa.eu/health/archive/ph_risk/committees/04_scenihr/docs/scenihr_o_010.pdf
- 29 SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks) (2009),
- Risk assessment of products of nanotechnologies, European Commission, Brussels,Belgium.
- 32 http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf
- 33 SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks) (2010),
- Scientific basis for the definition of the term "nanomaterial". European Commission,
 Brussels, Belgium.
- 36 http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_032.pdf
- 37 SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks) (2013).
- 38 Preliminary Opinion Nanosilver: safety, health and environmental effects and role in 39 antimicrobial resistance. European Commission, Brussels, Belgium.
- 40 http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_039.pdf
- 41 SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks) (2014).
- 42 Preliminary Opinion on the safety of metal-on-metal joint replacements with particular
- 43 focus on hip implants. European Commission, Brussels, Belgium.
- 44 http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_042.pdf
- 45 Semmler-Behnke, M., Kreyling, W.G., Lipka, J., Fertsch, S., Wenk, A., Takenaka, S.,
- 46 Schmid, G., Brandau, W. (2008). Biodistribution of 1.4- and 18-nm gold particles in rats.
- 47 Small 4, 2108-2111

- Skotland T, Iversen T-G, Sandvig K. (2010) New metal based nanoparticles for
 intravenous use: requirements for clinical success with focus on medical imaging.
 Nanomedicine: Nanotechnology, Biology and Medicine 6, 730-737.
- Sung JH, Ji, J.H., Park, J.D., Song, M.Y., Song, K.S., Ryu1, H.R., Yoon, J.U., Jeon, K.S.,
 Jeong, J., Han, B.S., Chung, J.H., Chang, H.K., Lee, J.H., Kim, D.W., Kelman, B.J., and
 Yu, I.J. (2011). Subchronic inhalation toxicity of gold nanoparticles. Part Fibre Toxicol 8,
 16.
- 8 Thalhammer A, Edgington RJ, Cingolani LA, Schoepfer R, Jackman RB. (2010). The use of 9 nanodiamond monolayer coatings to promote the formation of functional neuronal 10 networks. Biomaterials 31, 2097-2104.
- 11 Toropov, A. A., Leszczynski, J. (2007). A new approach to the characterization of 12 nanomaterials: predicting Young's modulus by correlation weighting of nanomaterials 13 codes. Chem. Phys. Lett. 433, 125–129.
- Toropov, A. A., Leszczynska, D., Leszczynski, J. (2007) Predicting water solubility and
 octanol water partition coefficient for carbon nanotubes based on the chiral vector.
 Comput. Biol. Chem. 31, 127–128.
- 17 Torres-Lugo M, Rinaldi C. (2013) Thermal potentiation of chemotherapy by magnetic 18 nanoparticles. Nanomedicine 8, 1689-1707..
- Umbreit TH, Francke-Carroll S, Weaver JL, Goering PL, Sadrieh N, Stratmeyer ME. (2011)
 Tissue distribution and histopathological effects of titanium dioxide nanoparticles after
- 21 intravenous or subcutaneous injection in mice. J Appl Toxicol 32, 350-357.
- 22 Unfried K, Sydlik U, Bierhals K, Weissenberg A, Abel J. (2008). Carbon nanoparticle-23 induced lung epithelial cell proliferation is mediated by receptor-dependent Akt 24 activation. Am J Physiol Lung Cell Mol Physiol. 2008 294, L358-367.
- Van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, SerranoRojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC, Hendriksen PJ, Marvin HJ,
 Peijnenburg AA, Bouwmeester H. (2012) Distribution, elimination, and toxicity of silver
 nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 6, 74277442.
- Van Der Zande M, Walboomers, Brannvall M, Olalde B, Jurado MJ, Alava JI, Jansen JA
 (2010). Genetic profiling of osteoblast like cells cultured on a novel bone reconstructive
 material consisting of poly-L-lactide, carbon nanotubes, and microhydroxyapatite in the
 presence of bone morphogenic protein-2. Acta Biomater. 6, 4352-4360.
- Van Landuyt KL, Hellack B, Van Meerbeek B, Peumans M, Hoet P, Wiemann M, et al (2014) Nanoparticle release from dental composites. Acta Biomater. 10, 365-374.
- Van Landuyt KL, Yoshihara K, Geebelen B, Peumans M, Godderis L, Hoet P, et al. (2012).
 Should we be concerned about composite (nano-)dust? Dent Mater. 28,1162-1170.
- Vasilev K, Cook J, Griesser HJ. (2009) Antibacterial surfaces for biomedical devices.
 Expert Rev Med Devices. 6, 553-567.
- 40 Vauthier C, Tsapis N, Couvreur P. (2011) Nanoparticles: heating tumors to death?41 Nanomedicine 6, 99-109.
- Vlachou E, Chipp E, Shale E, Wilson YT, Papini R, Moiemen NS. (2007). The safety of
 nanocrystalline silver dressings on burns: a study of systemic silver absorption.Burns.
 33, 979-985.
- 45 Wang, J., Zhoua, G., Chena, C.,Yu, H., Wang, T., Mad, Y., Jia, G., Gaoa, Y., Li, B., Suna,
- J., Li, Y., Jiao, F., Zhaoa, Y., and Chai, Z. (2007). Acute toxicity and biodistribution of
 different sized titanium dioxide particles in mice after oral administration. Toxicol Lett
 168, 176–185.

- Wang XZ, Yang Y, Li R, McGuinnes C, Adamson J, Megson IL, Donaldson K. (2014).
 Principal component and causal analysis of structural and acute *in vitro* toxicity data for nanoparticles. Nanotoxicology. 8, 465-476.
- 4 Warheit DB, Donner EM. (2010). Rationale of genotoxicity testing of nanomaterials: 5 regulatory requirements and appropriateness of available OECD test guidelines.
- 6 Nanotoxicology. 4, 409-413.
- Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW,
 Roszek B, Bisschops J, Gosens I, Van de Meent D, Dekkers S, De Jong WH, Van Zijverden
 M, Sips AJAM, and Geertsma RE. Nano-silver A review of available data and knowledge
 gaps in human and environmental risk assessment. Nanotoxicology 2009, 3(2):109-138.
- Wilhelmi V, Fischer U, Van Berlo D, Schulze-Osthoff K, Schins RP, Albrecht C.(2012).
 Evaluation of apoptosis induced by nanoparticles and fine particles in RAW 264.7
 macrophages: facts and artefacts. Toxicol *In vitro*.26, 323-334.
- Worle-Knirsch JM, Pulskamp K, Krug HF. (2006). Oops They Did It Again! Carbon
 Nanotubes Hoax Scientists in Viability Assays. Nano Letters 6, 1261-1268.
- Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi HB, Yeh JI, Zink JI, Nel AE. (2008).
 Comparison of the Mechanism of Toxicity of Zinc Oxide and Cerium Oxide Nanoparticles
 Based on Dissolution and Oxidative Stress Properties. ACS Nano 2, 2121-2134.
- Yang S-T, Wang T, Dong E, Chen X-X, Xiang K, Liu J-H, Liu Y, Wang H. (2012).
 Bioavailability and preliminary toxicity evaluations of alumina nanoparticles *in vivo* after
 oral exposure. Toxicology Res 1, 69.
- 22
- 23

- 1 Annex
- 2

3 Performance of some Characterisation Methods

Several methods have been identified and each method has its own performance in
terms of possibilities and limitations.

7 **Electron microscopy techniques** 8

9 Electron microscopy is perhaps the most generally applicable method. Scanning Electron 10 Microscopy (SEM) and transmission electron microscopy (TEM) are two types of electron 11 microscopes and are tools to view and examine small samples. Both instruments use 12 electrons or electron beams. The images produced in both tools are highly magnified and 13 offer high resolution. SEM measures the shape and size of the particles, topography of 14 the surface and determines the composition of elements and compounds the sample is 15 composed of. In SEM the specimen surface is scanned with a high-energy electron beam 16 and scattered electrons are measured while the TEM is based on transmitted electron 17 measurements TEM seeks to see what is inside or beyond the surface. SEM also shows 18 the sample bit by bit while TEM shows the sample as a whole. In terms of magnification 19 and resolution, TEM has an advantage compared to SEM. TEM has up to a 50 million 20 magnification level while SEM only offers 2 million as a maximum level of magnification. 21 The resolution of TEM is 0.5 angstroms while SEM has 0.4 nanometers. However, SEM 22 images have a better depth of field compared to TEM produced images. In SEM, the 23 sample is prepared on specialised aluminium stubs and placed on the bottom of the 24 chamber of the instrument. The image of the sample is projected onto the CRT or 25 television-like screen. On the other hand, TEM requires the sample to be prepared in a 26 TEM grid and placed in the middle of the specialised chamber of the microscope. The 27 microscope via fluorescent screens produces the image. Another feature of SEM is that 28 the area where the sample is placed can be rotated in different angles.

29

The scanning transmission electron microscope (STEM) offers an alternative configuration of transmission electron microscopy, and with it an extended range of analytical methods. In the STEM, as in the SEM, a finely focused electron beam is scanned across a raster on the specimen. Resultant signals used to image the specimen include the intensity of the transmitted beam, secondary electron emissions and elastically scattered electrons.

36

TEMs are usually configurable as STEMs, although there is inevitably a degree of compromise with the electron optics, resulting in marginally reduced imaging and analysis capabilities. Spatial resolution in a dedicated STEM is typically better than 1 nm, and may approach *ca*. 0.3 nm in a high-resolution system.

41

Size and morphology are readily characterised in the FEGSEM, TEM and STEM. HRTEM allows structural information on particles and atomic clusters to sub-0.2 nm resolution, while EELS and EDX analysis in the STEM allow the chemical analysis of particles down to nanometre diameters. By combining analysis methods, investigation of particle size, shape, structure, composition and surface properties is in principle possible.

47

However, the analysis environment is harsh, and only suited to robust particles with low
volatility. Analysis in the ESEM overcomes some of the analysis environment restrictions
and allows in principle the characterisation of particles with a significant volatile
component, although its application is currently restricted to particles larger than *ca*. 100
nm.

54 The use of X-ray emissions within the electron microscope is perhaps the most widely 55 applied form of analytical electron microscopy within aerosol. Electrons interacting with the specimen excite inner shell atomic electrons, and the decay of these excited states
 leads to the emission of X-rays with energies characteristic of the element.

3

Energy dispersive X-ray analysis (EDX) allows the quantification of elemental species of atomic number 6 (carbon) and above in the SEM, ESEM, TEM and STEM, although many detectors using a thin silicon protective window are limited to the detection of elements of atomic number 14 (silicon) and above. Analysis in the SEM is not ideal for ultrafine particles, as X-ray emissions from the holding substrate rapidly obscure those from particles under analysis.

10

For the same reason, spatial resolution within the SEM is relatively low (of the order of 0.5 -1 micrometer). Spatial resolution in the STEM and TEM approaches the electron beam width when using thin substrates or arranging for samples to be over a hole on the substrate. Sensitivity to high Z elements is sufficient for the identification of major elemental species in nanometer-diameter particles.

16

The sensitivity of EDX analysis in the TEM and STEM is limited by the relatively low
detection efficiency for X-ray emissions. However, each core electron excitation within
the specimen results in a corresponding energy loss within the electron beam.

20

By extracting energy loss information from the beam using an energy-dispersive spectrometer, increased sensitivity to core electron excitations is achievable. Electron energy loss spectroscopy (EELS) within the STEM (and TEM in some configurations) is perhaps the most powerful analysis technique available for analysing single particles within the electron microscope.

26

27 By recording and analysing the electron energy loss spectrum, details of specific inelastic 28 interactions, and thus sample composition and structure, can be investigated. Energy 29 losses below 50 - 100 eV are dominated by bulk electron excitations (plasmons) within 30 the sample. At higher-energy losses, energy loss is characterised by atomic core electron 31 excitations, appearing as `edges' on a decreasing background. The position, amplitude 32 and shape of each edge contain information on atomic core electron excitations, and the chemical environment surrounding the atom. The energy loss at which the edge occurs is 33 34 related to the atomic electron transition, allowing identification of elemental components

35

Scanning probe microscopy (SPM) and Scanning Tunneling Microscopy (STM) 37

The development of SPM methods has led to further techniques for imaging nanometersized particles. All methods are typified by a fine probe that is scanned in a raster across a surface. Probe position above (or on) the surface is controlled by a range of feedback signals which are also used to provide image contrast on the associated display raster.

Initial SPM development used the electron tunneling current between a conducting
specimen and probe suspended a few angstroms above its surface to map topographic
features at angstrom resolution (scanning tunneling microscopy (STM).

46

47 Atomic Force Microscopy

48

49 Later developments led to the use of Van der Waals forces between the specimen and the probe (atomic force microscopy (AFM)), allowing imaging of non-conducting 50 specimens. While a gap of *ca*. 1nm is maintained between the probe and specimen in 51 52 STM, AFM may be carried out with the probe in contact with the specimen, or separated 53 by up to several tens of angstroms. AFM can measure topology, grain size, frictional 54 characteristics and different forces. It consists of a silicon cantilever with a sharp tip with 55 a radius of curvature of a few nanometers. The tip is used as a probe on the specimen to 56 be measured. The forces acting at the atomic level between the tip and the surface of the 57 specimen cause the tip to deflect and this deflection is detected using a laser spot which

is reflected to an array of photodiodes. AFM has several advantages over the scanning 1 2 electron microscope (SEM). Unlike the electron microscope, which provides a two-3 dimensional projection or a two-dimensional image of a sample, the AFM provides a 4 three-dimensional surface profile. Additionally, samples viewed by AFM do not require 5 any special treatments (such as metal/carbon coatings) that would irreversibly change or 6 damage the sample, and does not typically suffer from charging artifacts in the final 7 image. While an electron microscope needs an expensive vacuum environment for proper 8 operation, most AFM modes can work perfectly well in ambient air or even a liquid 9 environment. This makes it possible to study biological macromolecules and even living 10 organisms. In principle, AFM can provide higher resolution than SEM. It has been shown 11 to give true atomic resolution in ultra-high vacuum (UHV) and, more recently, in liquid 12 environments. High resolution AFM is comparable in resolution to scanning tunneling 13 microscopy and transmission electron microscopy. AFM can also be combined with a 14 variety of optical microscopy techniques, further expanding its applicability. Combined 15 AFM-optical instruments have been applied primarily in the biological sciences but have also found a niche in some materials applications, especially those involving photovoltaics 16 research {Ref. Geisse, Nicholas A. (July-August 2009). "AFM and Combined Optical 17 18 Techniques". Materials Today 12 (7-8): 40-45. doi:10.1016/S1369-7021(09)70201-9}. A 19 disadvantage of AFM compared with the scanning electron microscope (SEM) is the single scan image size. In one pass, the SEM can image an area on the order of square 20 21 millimeters with a depth of field on the order of millimeters, whereas the AFM can only 22 image a maximum height on the order of 10-20 micrometers and a maximum scanning 23 area of about 150×150 micrometers. The scanned area size for AFM can be improved by 24 using parallel probes in a fashion similar to that of millipede data storage {Ref. R. V. 25 Lapshin (2007). "Automatic drift elimination in probe microscope images based on techniques of counter-scanning and topography feature recognition" (PDF). Measurement 26 27 Science and Technology (UK: IOP) 18 (3): 907–927. Bibcode 2007MeScT..18..907L. 28 doi:10.1088/0957-0233/18/3/046. ISSN 0957-0233}. 29

The scanning speed of an AFM is also a limitation. Traditionally, an AFM cannot scan images as fast as a SEM, requiring several minutes for a typical scan, while a SEM is capable of scanning at near real-time, although at relatively low quality. The relatively slow rate of scanning during AFM imaging often leads to thermal drift in the image

34 35

Other Scanning Probe Microscopy (SPM) techniques 36

37 The use of further feedback mechanisms has led to a number of SPM imaging methods, including magnetic force microscopy, lateral force microscopy, shear force microscopy 38 39 and near field scanning optical microscopy. All methods can be operated in a range of 40 environments, including atmospheric conditions, liquid immersion and vacuum Scanning 41 Tunneling Microscopy (STM), which measures the 3-D topology of the specimen, is based 42 on the concept of quantum tunneling. Electrons from the specimen can tunnel through 43 the vacuum between the conducting tip and the surface in interest due to voltage 44 difference between the tip and the surface. Monitoring the current as the tip's position 45 scans across the surface, which can then be used to display an image, makes 46 measurements.

47

48 SPM offers the possibility of analysing nanometre-diameter particles under ambient 49 conditions, thus getting away from some of the constraints imposed by electron microscopy. Imaging methods such as AFM and NSOM offer novel and exciting 50 51 possibilities for the characterisation of specific aerosols. For instance, the use of NSOM to 52 identify, size and count fluorescently tagged ultrafine particles would seem applicable to 53 identifying particle transport and deposition characteristics within biological systems. 54 While SPM is currently limited in the information that can be obtained from ultrafine 55 aerosol samples, the uniqueness of the information available should allow it to be 56 developed as a complementary tool to electron microscopy.

While electron microscopy and SPM are confined to the analysis of collected samples and
are constrained by the limitations of the collection and preparation systems used,
developments in aerosol mass spectrometry are providing the means for chemically
characterizing size-segregated ultrafine particles on-line.

5

6 Current technology allows the speciation of individual particles *ca*. 10 nm in diameter, 7 and as this is reduced still further, the resulting methods should provide invaluable 8 complementary data to off-line methods.

9 By adopting technologies developed within complementary disciplines, together with the 10 development of aerosol-specific methods, it is possible to develop a basis for 11 characterizing single sub-100 nm particles and features in terms of size, morphology 12 topology, composition, structure and physicochemical properties.

13

The available methods provide complementary means to characterise single ambient particles in depth. Currently, with few exceptions, they are complex, time-consuming to use, and in many cases still at a developmental stage. As such they are not ideally suited to the routine analysis of aerosols. However, by adopting a multi-disciplinary approach, the potential is there to develop complementary tools that will provide routine and detailed information on the particles that influence the environment we live and work in.

20

1 Small-angle X-ray scattering (SAXS)

21 22

23 Small-angle X-ray scattering (SAXS) is a small-angle scattering (SAS) technique where 24 the elastic scattering of X-rays (wavelength 0.1 ... 0.2 nm) by a sample which has 25 inhomogeneities in the nm-range, is recorded at very low angles (typically $0.1 - 10^{\circ}$). 26 This angular range contains information about the shape and size of macromolecules, 27 characteristic distances of partially ordered materials, pore sizes, and other data. SAXS is 28 capable of delivering structural information of macromolecules between 5 and 25 nm, of 29 repeat distances in partially ordered systems of up to 150 nm {Ref. Glatter O, Kratky O, 30 ed. (1982). Small Angle X-ray Scattering. Academic Press. ISBN 0-12-286280-5. } 31 USAXS (ultra-small angle X-ray scattering) can resolve even larger dimensions. SAXS 32 and USAXS belong to a family of X-ray scattering techniques that are used in the 33 characterisation of materials. In the case of biological macromolecules such as proteins, 34 the advantage of SAXS over crystallography is that a crystalline sample is not needed. 35 Nuclear magnetic resonance spectroscopy methods encounter problems with 36 macromolecules of higher molecular mass (> 30-40 kDa). However, owing to the random 37 orientation of dissolved or partially ordered molecules, the spatial averaging leads to a loss of information in SAXS compared to crystallography. The P(r) function or pair-38 39 distance distribution function describes the paired-set of all distances between points 40 within an object. In SAXS, the P(r) function is used to describe the paired-set of 41 distances between all of the electrons within the macromolecular structure and is a useful 42 tool for visibly detecting conformational changes within a macromolecule. Since the 43 function describes the set of all paired-distances within a structure, small changes in the 44 relative positions of a few residues can result in detectable changes in a P(r) distribution. 45

46 Light scattering techniques

47

48 Dynamic light scattering (DLS) (also known as photon correlation spectroscopy or quasi-49 elastic light scattering) is a technique in physics that can be used to determine the size 50 distribution profile of small particles in suspension or polymers in solution {Ref. It can 51 also be used to probe the behavior of complex fluids such as concentrated polymer 52 solutions. 53

NanoSight have developed a unique instrument, which allows the tracking of the Brownian motion of nanoparticles in liquid suspension on a particle-by-particle basis. Subsequent application of the Stokes-Einstein equation allows the determination of particle size. Particle count is also available. This technique presents a powerful

1 alternative to more typical light scattering techniques such as DLS for the analysis of complex and polydisperse sample types of varying composition. Both DLS and nanoparticle tracking analysis (NTA) measure the Brownian motion of nanoparticles 2 3 4 whose speed of motion, or diffusion coefficient, is related to particle size through the 5 Stokes-Einstein equation. NTA provides linear size axes, a high-resolution scale 6 compared to wide logarithmic scale in DLS, particle concentration information on the 7 vertical axis. Standard polystyrene beads of sizes ranging from 60 to 1,000 nm and 8 physical mixtures thereof were analyzed with NTA and DLS. The influence of different ratios of particle populations was tested. Drug delivery nanoparticles and protein 9 10 aggregates were analyzed by NTA and DLS. Also live monitoring of heat-induced protein 11 aggregation was performed with NTA.