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Abstract (<150 words) 

The relationship between SARS-CoV-2 viral load and infectiousness is not known. Using data 

from a prospective cohort of index cases and high-risk contact, we reconstructed by modelling 

the viral load at the time of contact and the probability of infection. The effect of viral load was 

particularly large in household contacts, with a transmission probability that increased to as 

much as 37% when the viral load was greater than 10 log10 copies per mL. The transmission 

probability peaked at symptom onset in most individuals, with a median probability of 

transmission of 15%, that hindered large individual variations (IQR: [8, 37]). The model also 

projects the effects of variants on disease transmission. Based on the current knowledge that 
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viral load is increased by 2 to 4-fold on average, we estimate that infection with B1.1.7 virus 

could lead to an increase in the probability of transmission by 8 to 17%.  

 

Introduction 

After more than 16 months of an unprecedented pandemic, some key aspects of disease 

transmission remain poorly understood. While respiratory droplets and aerosols have been 

rapidly demonstrated to be a major route of transmission of SARS-CoV-21, the role of the viral 

load as a driver of infectiousness has been suspected but not formally established. This lack of 

evidence is due to the fact that documented high-risk contacts occur mostly before the index 

has been diagnosed, with no information on the viral load level at the time of the contact. The 

relationship between viral load and infectiousness determines the timing of transmission, part 

of the inter-individual heterogeneity in transmission, and the impact of interventions (contact / 

case isolation, vaccination) on transmission. In the context of variants of concern2,3, that are 

likely associated with larger viral loads, it becomes even more critical to delineate the 

contribution of viral shedding from other suspected factors associated with an increased 

transmission. Further, as antiviral and vaccine strategies are being implemented, that directly 

reduce the amount of viral shedding4, it is essential to understand how they may contribute to a 

reduction in SARS-CoV-2 transmission.  

One of the most exhaustive clinical study to address the question of viral load and infectiousness 

has been obtained through individuals included in a randomised controlled trial done in March-

April 2020 in Spain, that aimed to assess the efficacy of hydroxychloroquine on SARS-CoV-2 

transmission5. Overall, 282 index and their 753 high-risk contacts were frequently monitored 

to assess their virological and clinical evolution, as well as possible infection for the contact. 

Interestingly, a clear association was found between the probability of being infected after a 
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high-risk contact and the viral load measured at the time of diagnosis5. This suggests that viral 

load is associated with transmission; however, it does not quantify the role of viral load in 

disease transmission, as the viral load at the exact time of the contact remains unknown and 

may greatly differ from that measured, several days later, at the time of diagnosis.  

In order to study in detail the role of viral load on the probability of transmission, we reanalysed 

these data by using a within-host model of viral dynamics6,7 to reconstruct the viral load levels 

of the index cases at the time of contact, and to infer the relationship between viral load and the 

probability of transmission after a high-risk contact. Further, we used the model to predict the 

effects of changes in viral load levels on the probability of transmission, representing the effects 

of infection with a variant of concern or infection in an individual in which vaccine would 

confer a partial protection against viral replication.  

Results 

Baseline characteristics 

A total of 257 index cases and their 574 high-risk contacts (simply called contacts in the 

following) were included in this analysis (Supplementary Figure 1). A high risk contact was 

defined as a contact of >15 min within 2 meters of distance from a symptomatic case8. 

The majority of index cases were female (72%) with a median age of 42 (interquartile range, 

IQR: [31, 52]). A total of 544 swab samples were performed at days 0, 3 and 7 days after study 

inclusion. Symptoms occurred at a median time of 4 days (IQR: [3, 5]) before the first swab 

sampling. The maximum median viral load obtained during follow was 8.4 log10 copies per mL 

(IQR: [6.9, 9.5]).  

The majority of contacts were female (54%) with a median age of 41 (IQR: [28, 53]). The form 

of contacts was categorized as either household (60%) or non-household (40%).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.07.21256341doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.07.21256341
http://creativecommons.org/licenses/by-nc-nd/4.0/


The majority of contacts (65%) and of infection events (65%) occurred ±1 day from symptoms 

onset (Supplementary Figure 2).  

Overall, 87 household contact led to an infection (proportion of transmission of 25.1%) and 29 

non-household contacts led to an infection (proportion of transmission of 13%). 

Viral dynamic model   

We used a target cell limited model to reconstruct the viral load kinetics of the index cases over 

time, assuming that the infection started 5 days before the onset of symptoms6. Although several 

models relating viral load to infectiousness were evaluated (see below), they all provided nearly 

identical fits to the viral load data predicted in the index cases (Figure 1).  

Figure 1: Individual prediction of viral kinetics for a subset of 41 index cases having 3 viral load measurements. Black dots represent 

the measured viral load. Empty squares represent contact without transmission. Red squares represent contact with transmission. 
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In the final model (Model M2), the basic within-host reproductive number, 𝑅0, quantifying the 

number of cell infections that occur from a single infected cell at the beginning, was estimated 

to 16.2, the loss rate of productively infected cells, 𝛿, to 0.83 d-1 (corresponding to a half-life 

of 20 hours) and viral production 𝑝, to 4.1 × 105 cells−1.d-1 (Table 2).  

When reconstructing the viral profiles, the model predicted that the median peak viral load 

coincided with symptoms onset, with a median peak value of 9.8 log10 copies per mL (IQR: 

[9.1, 10.4]). 

 Modelling the probability of transmission after a high-risk contact 

We tested several models of probability transmission (see Methods) and estimated the 

parameters of both viral dynamics and probability of transmission simultaneously. The two 

model assuming an effect of viral load on the probability of transmission (Model M2 and M3) 

provided an improvement in BIC as compared to the model M1, supporting an effect of viral 

load on the probability of infection. In this model, viral load was significantly associated with 

the probability of transmission after household contact (P<0.01, Wald test on γ1), however the 

effect was less clear after non-household transmission (P<0.05, Wald test on γ2).  

 Parameter estimates (RSE %) 

 No effect of viral load (M1) Logit-Linear (M2) Log-linear Model (M3) 

 Fixed effect Random effect SD Fixed effect Random effect SD Fixed effect Random effect SD 

𝑅0 14.2 (80) 0.27 (278) 16.2 (17) 0.23 (48) 16.0 (43) 0.28 (76) 

𝛿 (𝑑−1) 0.85 (14) 0.048 (77) 0.83 (7) 0.045(72) 0.83 (5) 0.042 (41) 

𝑝 

(𝑐𝑒𝑙𝑙𝑠−1. 𝑑−1) 
3.3 × 105 (148) 2.54 (28) 4.1 × 105 (77) 2.61 (8) 3.7 × 105 (127) 2.56 (10) 

𝛾1 1.24 (69) 

0.87(114) 

0.38 (20) 

0.98 (28) 

0.39 (7) 

0.6 (26) 

𝛾2 0.55 (121) 0.16 (43) 0.22 (13) 

𝐵𝐼𝐶 2490 2487 2489 

 
Table 1 : Parameters estimates of the three candidate models. 𝑅0, basic reproductive number; 𝛿, loss rate of infected cells; 𝑝, rate of viral 

production; 𝛾1 represents the effect of household contacts on the transmission probability; 𝛾0 represents the effect of non-household contacts 

on the transmission probability. M1 is a model where the transmission probability does not depend on the viral load. M2 and M3 are models 

where the transmission probability depends on the viral load at the time of contact.   
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Of note our models were associated with a large between-subject variability on the effect of the 

viral load, 𝛽 (as measured by the standard deviation of the associated random effects, 𝜔𝛽) 

suggesting that several other factors are involved in transmission, besides viral load. To 

represent this variability, we sampled 1,000 individuals in the population distribution to get 

prediction intervals for the viral load and the probability of transmission. 

Using the simulated individuals, we inferred the viral load levels and the mean probability of 

transmission for both household and non-household contacts, that we compared with the 

observed proportion of infection for different viral load level category (Figure 2). The mean 

probability of transmission increased from the fixed nominal value of 5% for viral load levels 

<106 copies per mL, to as much as 37% and 17% for viral load ≥1010 copies per mL for 

household and non-household contacts respectively. This is in agreement with the value of 37% 

and 29% observed in the clinical study (Figure 2).  

Over the time of infection, the probability of transmission peaked at the time of symptom onset, 

albeit with large inter-individual variabilities (Figure 3). In household contacts, the median peak 

of the probability of transmission was 15% (IQR: [8, 37]), but the mean value was much larger, 

 

  

  

  

  

  

  

                   

                        

 
  
 
  
  
 
  

 
 
 
  
  
 
 
 
   
  
  
  
  
 
 
 
 
  
 
  
 
  
 
 

                        
                                

 

  

  

  

  

  

  

                   

                        

 
  
 
  
  
 
  

 
 
 
  
  
 
 
 
   
  
  
  
  
 
 
 
 
  
 
  
 
  
 
 

                        
                                

Figure 2: Mean probability of transmission according to different viral load  levels of simulated individuals. The black dots represent 

the observed proportion of transmission. 95% confidence intervals are represented in black. Household contacts (Left). Non-

household contacts (Right).  
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to about 28%. The peak was much lower in non-household contacts, with a median value of 8% 

(IQR: [6, 13], and mean value of 13%. As a consequence of our assumption that the probability 

of transmission after a high-risk contact returned to baseline level when viral load dropped 

below the threshold of viral culture, i.e., 6 log10 copies per mL6, the window for infection was 

much shorter than the duration of viral shedding. The probability of transmission was above 

baseline during a median duration of 12 days (IQR: [10, 15]).  

Impact of changes in viral load levels on the probability of transmission 

Finally, we used our model to characterize the effects of changes in viral load levels on the 

probability of transmission. For that purpose, we evaluated the impact of a change in the viral 

production rate, p, by a fold 2-100, which corresponds to an average increase in viral load of 1-

7 cycle thresholds (Ct), at each time point.  

To get a sense of the impact of these changes on infectiousness, we calculated the average 

probability of transmission after a high-risk contact in the overall population during the whole 

study period. We took into account the fact that contacts are not uniformly distributed, and we 

assumed a similar distribution of contacts as found in the original study for both household and 

 

 

 

  

   

   

   

   

   

          

                                

 
  
 
   

 
 
 
  
 
 
 
 
 
  
 
 
  
 
  
  

 
 

 
  
 
 
 
  
 
  
 
  
  
 
 
 
     

 

 

 

  

   

   

   

   

   

          

                                

 
  
 
   

 
 
 
  
 
 
 
 
 
  
 
 
  
 
  
  

 
 

 
  
 
 
 
  
 
  
 
  
  
 
 
 
     

              

      

    

Figure 3: Prediction interval of the viral load and probability of transmission over time after a high-risk contact. The median and 

the mean are represented as a solid and dashed line respectively. (Black: Viral load. Probability of transmission for household 

contacts (Left).  Probability of transmission for non-household contacts (Right). The shaded areas represent the interval between 

the first and third quartile. Realised on 1000 simulated individuals. 
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non-household contacts (Supplementary Figure 2). For the baseline scenario using the 

estimated parameters in our population, the model accurately reproduced the observed 

transmission probability, at 25% and 11% for household and non-household contacts, 

respectively. With an increased value of viral production rate p by a factor 2, which corresponds 

to the viral load increase caused by B1.1.7 strain in large scale epidemiological studies9–11, the 

average probability of transmission would increase to 27% and 12% for household and non-

household contacts respectively. With a 4-fold increase as suggested elsewhere2 the average 

probability of transmission would increase to 29% and 13%, respectively (Figure 4). The 

estimates for the P1 and B1.1.351 variants are much less well established, with  values ranging 

from a 2-fold2 to a 10-fold increase12. Assuming an increase by 8-fold of the viral load, the 

average probability of transmission would increase to 31% and 14%, respectively, i.e., an 

increase of more than 25% from the baseline scenario (Figure 4 and Supplementary Table S2).  

Conversely, we studied the effects of lower levels of viral load, as expected from a partial 

protection conferred by vaccination. Epidemiological studies in Israel reported a 3-5-fold lower 

viral load in infected vaccinated individuals as compared to unvaccinated individuals4. 

Assuming a reduction by a factor 4 of the viral production rate, p, would lead to an average 

Figure 4: Impact of changes in the viral production rate on the average probability of transmission after household (blue) and non-

household (blue) contacts. The black line represents the median peak viral load observed in each setting. 

 

 

 

 

 

  

 

 

  

  

  

  

  

  

  

                                                     

                                    

 
  
 
   
 
 
 
  
  
 
 
 
  
 
 
  
 
  
  

 
 

 
  

  
 
 
    

 
 
 
  
 
  
 
  
  
 
 
 
        

 
         

     

          

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 8, 2021. ; https://doi.org/10.1101/2021.05.07.21256341doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.07.21256341
http://creativecommons.org/licenses/by-nc-nd/4.0/


probability of transmission of 21 and 10% for household and non-household contacts 

respectively. In another study relying on systematic repeated viral testing in both symptomatic 

and asymptomatic individuals, the effect of vaccine was much more dramatic, with a 100-fold 

reduction in viral load levels13. This would translate into an average transmission probability of 

12 and 7%, which represents a decrease of 50% and 38% from the baseline scenario for 

household and non-household contacts respectively (Figure 4 and Supplementary Table S2).  

In addition, we also tested the sensitivity of our results to the assumptions made for the effects 

of viral load. Exploring alternative models (M3) led to a largely similar result (Supplementary 

Table S2). 

Discussion 

This is the first detailed description of the relationship between viral load and infectiousness. 

We here quantified the impact of viral load on infectiousness obtained on a highly detailed data 

obtained in a large epidemiological study8. The effect of viral load was particularly large in 

household contacts, with a mean transmission probability that increased to as much as 37% 

when the viral load was over 10 log10 copies per mL. Unlike what has been suggested until now 

by theoretical models14,15, the probability of transmission increased continuously with viral load 

and no saturation effects were visible at high viral loads (Supplementary Figure 3). However, 

and consistent with reports suggesting that the probability of transmission16 greatly vary 

between individuals, the effect of viral load was individual-dependent. For instance, at the peak 

of infectiousness, the median probability of transmission during household contact was 15%, 

but ranged from 5 to 100%.  

The model also provided information on the effects of variants on disease transmission. We 

relied on results found in large-scale epidemiological data, that reported an average increase of 

the B1.1.7 virus by 1-2 Ct2,9,10. This can be reproduced in our model by assuming that viral 
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production increases by a factor 2. Alternatively, as only the product p×T0 can be identified, 

this could also be due to B1.1.7 being able to infect twice as much target cells, as suggested by 

the fact that the N501Y substitution improved the affinity of the viral spike protein3. Regardless 

of the origin of this increased viral load, we estimated that an increase of viral load by a factor 

of 2 would increase the average transmission probability in household contacts from 25 to 27% 

(8% increase from baseline scenario). Assuming an increase by 4-fold of the viral load (2 Ct on 

average) would lead to a much more dramatic effect, increasing the average transmission 

probability in household contacts to 29% (17% increase from baseline scenario). Of note 

assuming a steeper effect of the viral load on the probability of transmission would lead to 

larger effect of variants (Supplementary Table S2).  

Conversely, vaccination rollout is expected to confer a large level of protection, partly due to 

lower virus carriage in infected individuals. The exact magnitude of this decrease is difficult to 

quantify, and depends on the design of the studies, that include or not asymptomatic individuals. 

In fact preliminary reports have reported numbers going from a 5 to 100-fold reduction in viral 

load levels13. Whatever the exact value, it is clear that such reductions could be associated with 

large reductions in the probability of transmission.  

Our study has some important limitations that need to be acknowledged. First, the reporting of 

high-risk contacts is partial and remains prone to various reporting biases. One of them is the 

fact that at the time where the study was conducted, there was no firm evidence of the role of 

pre-symptomatic transmission. This could explain why in our study a large number of high-risk 

household contact were reported to occur the day of symptom onset. It is also possible that 

several of the household contacts were not unique and occurred multiple times. Because we had 

no information on these contacts, we did not conduct specific analyses on repeated contacts, 

but it is something that future epidemiological studies will need to investigate. Another 

limitation is that we had no genomic data to ensure that infection observed in contact individuals 
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results from an infection by the index case. In most infected contacts, we also did not have data 

on the time of symptom onset, which prevented us from detecting infections unlikely related to 

the contact identified in our study. However, the temporality of symptoms would not be 

sufficient to bring a decisive information on the infection event. Indeed, the study was 

conducted during the first epidemic wave in Spain, where most individuals, including in 

hospital settings, had not yet applied social distancing and masking, causing dozens of 

thousands of individuals infected every day. Both the possibility of repeated contacts in 

household and infection of contacts outside the identified contact network may have led us to 

overestimate the difference in the probability of transmission between household and non-

household contacts. Specifically, infections outside of the identified probability contact would 

flatten the estimated relationship between viral load and transmission compared to the true 

relationship. It is also important to note that viral load data in index cases were collected on 

average 3-4 days after symptom onset, in the declining phase of viral load, several days after 

most of the contacts had occurred. To reconstruct the viral load profiles in absence of 

information, we assumed a fixed incubation period of 5 days with no variability6,17. As peak 

viral load could be related to symptom onset5, our approach of fixing a unique incubation period 

likely underestimates the variability of viral load dynamics in the pre-symptomatic phase. This 

may be partly compensated in our model by the large variability in the effect of viral load on 

transmission. Given the difficulty to access to very early virological data, this will remain a 

major limitation to this type of analysis. This can be partly studied in animal models18 but 

obviously at the cost of a very specific system with limited translation to human epidemiology.  

To conclude our study quantifies the probability of infection according to viral load level after 

a high-risk contact. This relationship can be used to predict the effects of changes in virus 

paradigm, caused by the emergence of new variants and/or the rollout of vaccination. We 
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estimate that 2- to 4-fold increase in viral load level observed with B1.1.7 virus could lead to 

an increase in the probability of transmission by 8 to 17% after a high-risk contact.  
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Methods  

Data collection 

Data used come from a cluster-randomized trial which included individuals with PCR-

confirmed COVID-19 and their close contacts, and evaluated the efficacy of 

hydroxychloroquine as a pre- or post-exposure prophylaxis. The trial was conducted between 

March, 17 and April 28, 2020 in three out of nine health-care area in Catalonia, Spain. More 

details on the study protocol and main results can be found in the original publication8.  

Study participants 

All index cases were aged 18 years or older with no hospitalisation, nasopharyngeal PCR 

positive results at baseline and mild symptoms onset within 5 days of inclusion. High-risk 

contacts were adults with a recent history of exposure and absence of COVID-19 like symptoms 

within the 7 days preceding enrolment. In the original publication, 282 index cases and the 

resulting 753 contacts were enrolled5; here we did not include 3 index individuals (and their 

corresponding 25 contacts) for which no viral load data was available, 8 index individuals (and 
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their corresponding 19 contacts) for which no viral load was detected at any time point. Further, 

in 12 index cases (and their corresponding 127 contacts), no date of contact was available. 

Finally, we removed contacts occurring more than 5 days before symptoms onset, as they are 

unlikely to originate from the index case given the disease incubation time6. Thus, overall, our 

analysis was performed on 257 index and 574 contacts (see Supplementary Figure 1). In 12 

index cases, the date of symptoms onset was not known and was imputed to 4 days before their 

first swab sampling, which corresponds to the median value observed in this population. 

Type of contact was considered as household or non-household, which included Nursing 

home contacts, Health-care worker and other undefined contacts. 

Viral 𝑘inetic model 

We used a target cell-limited model to reconstruct nasopharyngeal viral kinetics in index 

cases6,19,20. The model includes three populations of cells, namely Target cells (𝑇), infected 

cells in their eclipse phase (𝐼1) and productively infected cells (𝐼2). Target cells (𝑇) are infected 

at a constant rate 𝛽 by infectious virus (𝑉𝐼). Infected cells enter an eclipse phase at a rate 𝑘 

before becoming productively infected cells (𝐼2). We assumed productively infected cells have 

a constant loss rate 𝛿. Virions are released from productively infected cells at a rate 𝑝 and are 

loss at a rate 𝑐. A proportion 𝜇 of produced viruses are infectious (𝑉𝐼) and the remaining (1 −

𝜇) are non-infectious viruses (𝑉𝑁𝐼), both are cleared at a rate 𝑐. The model can be written as 

follows:  

𝑑𝑇

𝑑𝑡
= −𝛽𝑇𝑉𝐼                                  (1) 

𝑑𝐼1

𝑑𝑡
= 𝛽𝑇𝑉𝐼– 𝑘𝐼1                            (2) 

𝑑𝐼2 

𝑑𝑡
= 𝑘𝐼1 − 𝛿𝑥𝐼2                          (3) 
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𝑑𝑉𝐼

𝑑𝑡
= 𝑝𝜇𝐼2 − 𝑐𝑉𝐼                          (4) 

𝑑𝑉𝑁𝐼

𝑑𝑡
= 𝑝(1 − 𝜇)𝐼2 − 𝑐𝑉𝑁𝐼          (5) 

Based on this model, the basic reproduction number, 𝑅0, defined as the number of newly 

infected cells by one infected cell at the beginning of the infection21 is, 𝑅0 =
𝑝𝛽𝑇0𝜇

𝑐𝛿
. Given the 

absence of any antiviral effect of hydroxychloroquine against SARS-CoV-28,22,23, we did not 

consider any effect of hydroxychloquine in the model.    

Assumptions on parameter values  

Some parameters were fixed to ensure identifiability. The clearance rate 𝑐 was fixed at 10 𝑑−1  

and the eclipse phase 𝑘 to 4 𝑑−1 based on previous work6,7,24. The proportion of infectious virus 

𝜇 was assumed constant over time and was fixed to 10−4 as observed in animal model24. The 

initial number of target cells, 𝑇0, was calculated as follows: As there are 4 × 108 epithelial cells 

in the upper respiratory tract (URT) and the volume of the URT is 30 𝑚𝐿 we can calculate the 

concentration of epithelial cells in the URT: 4 × 108 ∗
1

30
= 1.33 × 107 𝑐𝑒𝑙𝑙𝑠. 𝑚𝐿−1. However, 

the ACE2 and TMPSS receptor needed for SARS-CoV-2 entry may be expressed by a small 

fraction of these cells. Hence, assuming the ACE2 receptor are expressed in 1%25,26 of these 

cells, we set T0= 1.33 × 105 𝑐𝑒𝑙𝑙𝑠. 𝑚𝐿−1. For each index case, the incubation period was fixed 

to 5 days as found in previous work, i.e., we assumed that the time of infection of index cases 

was exactly 5 days before symptom onset6,17. We assumed that at the moment of infection there 

was exactly one productively infected cell in the URT. Hence, at 𝑡 = 𝑡𝑖𝑛𝑓, 𝑇 = 𝑇0;  𝐼1 = 0; 𝐼2 =

1

30
;  𝑉𝐼 = 0 𝑎𝑛𝑑 𝑉𝑁𝐼 = 0. 
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Statistical model for viral kinetics 

Parameter estimations were performed using non-linear mixed-effect model. The structural 

model used to describe the observed log10 viral load is 𝑦𝑖,𝑗 = log10𝑉(𝑡𝑖,𝑗, 𝛹𝑖
𝑉) + 𝑒𝑖,𝑗  

Where 𝑦𝑖,𝑗 is the j𝑡ℎ observation of index 𝑖 at time 𝑡𝑖,𝑗 with 𝑖 𝜖 1, … , 𝑁 and 𝑗 𝜖 1, … , 𝑛𝑖 with 𝑁 

the number of index and 𝑛𝑖 is the number of observations for index 𝑖. 𝑉(𝑡𝑖,𝑗, 𝛹𝑖
𝑉) is the function 

describing the total viral load dynamics (𝑉𝐼(𝑡𝑖,𝑗) + 𝑉𝑁𝐼(𝑡𝑖,𝑗))  predicted by the model at time 

𝑡𝑖,𝑗. The vector of viral kinetic parameters for index 𝑖 is noted 𝛹𝑖
𝑉 and 𝑒𝑖,𝑗 is the additive residual 

Gaussian error term of constant standard deviation 𝜎. The vector of individual parameters 

depends on a fixed effects vector and on an individual random effects vector, which follows a 

normal centered distribution with a diagonal variance-covariance matrix 𝛺. To ensure 

positivity, the individual parameters follow a lognormal distribution.  

Probability of transmission 

We noted 𝑥𝑖
𝑐 the 𝑐𝑡ℎ contact of index case 𝑖 and 𝑐 𝜖 1, … , 𝐶𝑖,  with 𝐶𝑖 the number of contacts 

of index 𝑖. The probability of transmission depends on the time of contact 𝑡𝑖
𝑐, the nature of 

contact, namely household (ℎ𝑖
𝑐 = 1) or not (ℎ𝑖

𝑐 = 0), and the vector of individual parameters 

𝛹𝑖, which contains the viral parameters 𝛹𝑖
𝑉 and transmission parameters 𝛽𝑖 for index 𝑖. Five 

models of transmission were tested (M1-M5), described as follows:  

Model M1. No effect of viral load 

logit 𝑃(𝑥𝑖
𝑐 = 1|𝑡𝑖

𝑐 , 𝛹𝑖 , ℎ𝑖
𝑐 ) = 𝛼 + 𝛽𝑖 

where: 𝛽𝑖 = (𝛾1ℎ𝑖
𝑐 + 𝛾0(1 − ℎ𝑖

𝑐)) × exp (𝑏𝑖) with 𝛾1 (resp. 𝛾0 ) is the effect of household 

contact (reps. non-household) on the probability of transmission, and 𝑏𝑖 is an individual 
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random effect assumed to follow a Gaussian distribution of variance 𝜔𝛽
2 . The baseline 

probability of transmission was fixed to 5% (𝛼=-2.94). 

Model M2. Logit-linear effect of viral load  

logit 𝑃(𝑥𝑖
𝑐 = 1|𝑡𝑖

𝑐, 𝛹𝑖 , ℎ𝑖
𝑐 ) = {

 𝛼                                                  if log10 V(ti
c, 𝛹𝑖

𝑉) ≤ 6

𝛼 + 𝛽𝑖 × (log10 𝑉(𝑡𝑖
𝑐, 𝛹𝑖

𝑉) − 6) if log10 V(ti
c, 𝛹𝑖

𝑉) > 6
  

where: 𝛽𝑖 = (𝛾1ℎ𝑖
𝑐 + 𝛾0(1 − ℎ𝑖

𝑐)) × exp (𝑏𝑖) with 𝛾1 (resp. 𝛾0 )  the effect of viral load on the 

probability of transmission in household contact (resp. non-household), and 𝑏𝑖 a Gaussian 

individual random effect with variance 𝜔𝛽
2. The baseline probability of transmission was fixed 

to 5% (α=-2.94) for viral load lower than 6 log10 copies per mL, which corresponds to the 

threshold for viral culture6,15.  

Model M3. Log-linear effect of viral load  

log 𝑃(𝑥𝑖
𝑐 = 1|𝑡𝑖

𝑐 , 𝛹𝑖 , ℎ𝑖
𝑐  ) = {

𝛼                                                      if log10 V(ti
c, 𝛹𝑖

𝑉) ≤ 6

𝛼 + 𝛽𝑖 × (log10 𝑉(𝑡𝑖
𝑐 , 𝛹𝑖

𝑉) − 6) if log10 V(ti
c, 𝛹𝑖

𝑉) > 6
 

where: 𝛽𝑖 = (𝛾1ℎ𝑖
𝑐 + 𝛾0(1 − ℎ𝑖

𝑐)) × exp (𝑏𝑖)  with 𝛾1 (resp. 𝛾0)  the effect of viral load on 

the probability of transmission in household contact (resp. non-household), and 𝑏𝑖 a Gaussian 

individual random effect with variance 𝜔𝛽
2. The baseline probability of transmission was fixed 

to 5% (α=-2.99) and the probability was bounded to 1.  

Model M4. No effect of viral load with additive variability  

logit 𝑃(𝑥𝑖
𝑐 = 1|𝑡𝑖

𝑐 , 𝛹𝑖 , ℎ𝑖
𝑐 ) = 𝛼 + 𝛽𝑖  

where: 𝛽𝑖 = (𝛾1ℎ𝑖
𝑐 + 𝛾0(1 − ℎ𝑖

𝑐)) + 𝑏𝑖 with 𝛾1 (resp. 𝛾0 ) is the effect of household contact 

(reps. non-household) on the probability of transmission, and 𝑏𝑖 is an individual random effect 

assumed to follow a Gaussian distribution of variance 𝜔𝛽
2 . The baseline probability of 

transmission is fixed to 5% (𝛼=-2.94). 
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Model M5. Logit-linear effect of the maximum predicted viral load 

Finally, we tested the model M2 using the maximum of the predicted viral load.  

logit 𝑃(𝑥𝑖
𝑐 = 1|𝑡𝑖,𝑗, 𝑦𝑖,𝑗, ℎ𝑖

𝑐  ) = {

 𝛼                                            if max
1≤𝑗≤𝑛𝑖

𝑦𝑖,𝑗 ≤ 6

𝛼 + 𝛽𝑖 × ( max
1≤𝑗≤𝑛𝑖

𝑦𝑖,𝑗 − 6) if max
1≤𝑗≤𝑛𝑖

𝑦𝑖,𝑗 > 6
  

where: 𝛽𝑖 = (𝛾1ℎ𝑖
𝑐 + 𝛾0(1 − ℎ𝑖

𝑐)) × exp (𝑏𝑖) with 𝛾1 (resp. 𝛾0 )  the effect of viral load on the 

probability of transmission in household contact (resp. non-household), and 𝑏𝑖 a Gaussian 

individual random effect with variance 𝜔𝛽
2. The baseline probability of transmission was fixed 

to 5% (α=-2.94) for viral load lower than 6 log10 copies per mL, which corresponds to the 

threshold for viral culture6,15.  

Parameter estimation 

For each model, we estimated simultaneously the vector of individual parameter 𝛹𝑖, which 

depends on both the parameters of the viral kinetic model (𝑅0, 𝛿, 𝑝, 𝜔𝑅0
, 𝜔𝛿 , 𝜔𝑝) and the 

parameters of the transmission model (𝛽, 𝜔𝛽). The model providing the lowest BIC was 

retained. All parameters were estimated by computing the maximum-likelihood estimator using 

the stochastic approximation expectation-maximization (SAEM) algorithm implemented in 

Monolix Software 2020R1 (http://www.lixoft.eu/)27–29.  

Simulations settings 

We provided prediction intervals for viral load and transmission probability over time, 

depending on the nature of contact, namely household (ℎ = 1) or not (ℎ = 0). In this purpose, 

we performed simulations, sampling 𝑀 = 1000 individual vectors of parameters 𝛹𝑚 from the 

population distribution. Then, we derived the predicted viral load 𝑉(𝑡, 𝛹𝑚
𝑉) and the predicted 

transmission probability at all times according to the type of contact 𝑃ℎ(𝑡, 𝛹𝑚).    
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We then calculated the median viral load,  𝑉̂(t) and the median transmission probability 

𝑃ℎ̂(𝑡) over the 𝑀 simulated individuals, as well as the first and third empirical quantiles to 

provide prediction intervals.  

All simulations were performed using the Simulx package on R.3.6.0.  

 Calculating the average probability of transmission 

Using our model, we also aimed to visualize the impact of a therapeutic intervention or a virus 

mutation on the probability of transmission, first at the individual level at each time, and second 

at the population level as an average transmission probability during the 13 days period where 

contacts occurred (from day -5 to day 7 post-symptoms onset). In this purpose, we defined 

several scenarios of simulation by modifying the corresponding parameters in the viral dynamic 

model. First, we increased the viral production parameter, 𝑝, by a factor of 2, 4, 8,16, 32, 64 

and 100 corresponding to observed increases of 1-7 𝐶𝑡 value for different variants2,10,11. Second, 

we decreased the production parameters 𝑝 by a factor of 2, 4, 8 and 16 as well4 to emulate the 

impact of vaccination4,13. Simulations were performed following same procedure as above.  

Then, for each emulated scenario, we computed the average probability of transmission as the 

empirical mean of transmission probabilities over the 13 days period where contacts occurred, 

weighted by the proportion of contacts at each day 𝑝𝑡,ℎ (supplementary figure 2): 

𝑃ℎ
̅̅ ̅ =

1

13
∑ 𝑃ℎ̂(𝑡)

12

𝑡=0

𝑝𝑡,ℎ 

We computed the resulting increase or decrease of the probability of transmission compared 

to the baseline scenario.  
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Supplementary Figures 

 

 

 

Supplementary Figure 1: Flow chart of data selection. 

753 contacts 

282 index 

728 contacts 

279 index 

601 contacts 

267 index 

582 contacts 

259 index 

3 index cases without any dates (corresponding to 

25 contacts) 

12 index cases for which there was no date of 

exposure (corresponding to 127 contacts) 

8 index cases without any viral load at any time 

(corresponding to 19 contacts) 

574 contacts 

257 index 

8 contacts were removed because happening more 

than 5 days before symptoms onset 

Supplementary Figure 2: Distribution of contacts based on symptoms onset. All contact type (Left), Household contacts (Middle), 

Non-household contacts (Right). Contacts resulting in infection are represented as a darker shade. 
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Supplementary Figure 3: Predicted probability of transmission as a function of log-viral load using the population parameters 

of model M2.  

 Parameter estimates (RSE %) 

 No effect of viral load with additive variability (M4) Logit-Linear with MaxVL (M5) 

 Fixed effect Random effect SD Fixed effect Random effect SD 

𝑅0 14.5 (53) 0.327 (72) 32.5 (51) 0.42 (127) 

𝛿 (𝑑−1) 0.843 (2.81) 0.05 (46) 0.857 (16) 0.06 (200) 

𝑝 

(𝑐𝑒𝑙𝑙𝑠−1. 𝑑−1) 
3.3 × 105 (136) 2.53 (16) 1.43 × 106 (189) 2.61 (12) 

𝛾1 1.6 (12) 

1.19 (27.2) 

0.358 (35) 

1.4 (31.8) 

𝛾2 0.663 (46) 0.124 (79 

𝐵𝐼𝐶 2494 2500 

 Supplementary Table S1: Parameters estimates of the three candidate models. 𝑅0, basic reproductive number; 𝛿, loss rate of infected cells; 

𝑝, rate of viral production; 𝛾1 represents the effect of household contacts on the transmission probability; 𝛾0 represents the effect of non-

household contacts on the transmission probability. M4 is a model where the transmission probability does not depend on the viral load. M5 

is a model where the transmission probability depends on the maximum observed viral load for the index case.   
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Average probability of transmission %  

(Difference with the predicted value) 

 Logit-Linear (M2) Log-linear Model (M3) 

 Increased viral production Decreased viral production Increased viral production Decreased viral production 

 Househ
old 

Non-
Household 

 Peak viral 

load  
(log10 copies 

per mL) 

Household 
Non-

Household 

Peak viral 

load  
(log10 copies 

per mL) 

Household 
Non-

Household 

Peak viral 

load  
(log10 copies 

per mL) 

Household 
Non-

Household 

Peak viral 
load 

 (log10 

copies per 
mL) 

Observed 

value 
25.1 12.8 - 25.1 12.8 - 25.1 12.8 - 25.1 12.8 - 

Predicted 

value 
24.7 11 9.4 24.7 11 9.4 25.1 12.2 9.3 25.1 12.2 9.3 

Fold change 

in p  
            

2 
26.8 

(+8.4) 

11.9  

(+7.2) 

9.7  

(+3.2) 

22.7 

 (-8.4) 

10.3  

(-6.9) 

9.1  

(-3.2) 

28  

(+11.5) 

13.4 

(+9.5) 

9.6 

(+3.2) 

22.3 

(-11.1) 

11.2 

(-8.8) 

9 

(-3.2) 

4 
28.9 

(+16.8) 

12.7  

(+14.8) 

10  

(+6.4) 

20.6 

(-16.6) 

9.6  

(-13.5) 

8.8  

(-6.4) 

31 

(+23.4) 

14.7 

(+19.7) 

9.9 

(+6.5) 

19.7 

(-21.3) 

10.2 

(-16.7) 

8.7 

(-6.5) 

8 
30.9 

(+25) 

13.6  

(+22.5) 

10.3   

(+9.6) 

18.6          

(-24.8) 

8.9  

(-19.6) 

8.5  

(-9.6) 

34 

(+35.5) 

16 

(+30.5) 

10.2  

(+2.1) 

17.4 

(-30.8) 

9.4 

(-23.7) 

8.4  

(-9.7) 

16 
32.9 

(+33.2) 

14.5  

(+30.4) 

10.6  

(+12.8) 

16.7          

(-32.6) 

8.3  

(25.3) 

8.2 

 (-12.8) 

37.1  

(+47.8) 

17.4 

(+42.1) 

10.5 

(+12.9) 

15.2  

(-39.4) 

8.6  

(-30) 

8.1 

(-12.9) 

100 
38.0 

(+53.9) 

16.8 

(+52.1) 

11.4 

(+21.3) 

12.1 

(-50) 

6.9 

(-38) 

7.4 

(-21.3) 

45.2 

(+80) 

21.5 

(+76) 

11.3 

(+21.5) 

10.6 

(-57.5) 

7 

(-43) 

7.3 

(-21.5) 

 
Supplementary Table S2: Impact of changes in viral production rate on the average transmission probability during a high-risk contact. . 
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