1	SARS-CoV-2-specific T cell memory is long-lasting in the majority of		
2	convalsecent COVID-19 individuals		
3			
4	Ziwei Li ^{1,3*} , Jing Liu ^{1,3*} , Hui Deng ^{1,3*} , Xuecheng Yang ^{1,3} , Hua Wang ¹ , Xuemei		
5	Feng ^{1,3} , Gennadiy Zelinskyy ^{2,3} , Mirko Trilling ^{2,3} , Kathrin Sutter ^{2,3} , Mengji Lu ^{2,3} , Ulf		
6	Dittmer ^{2,3} , Baoju Wang ^{1,3} , Dongliang Yang ^{1,3#} , Xin Zheng ^{1,3#} , Jia Liu ^{1,3#}		
7			
8	¹ Department of Infectious Diseases, Union Hospital, Tongji Medical College,		
9	Huazhong University of Science and Technology, Wuhan 430022, China		
10	² Institute for Virology, University Hospital of Essen, University of Duisburg-Essen,		
11	Essen 45147, Germany		
12	³ Joint International Laboratory of Infection and Immunity, Huazhong University of		
13	Science and Technology, Wuhan 430022, China		
14			
15			
16	* # These authors contributed equally to this work.		
17			
18	Correspondence to:		
19	Prof. Dr. Jia Liu		
20	E-mail: jialiu77@hust.edu.cn		
21	Tel: +86 186 96159826		
22	Department of Infectious Diseases, Union Hospital, Tongji Medical College,		
23	Huazhong University of Science and Technology, Wuhan 430022, China		

25 ABSTRACT

26	An unaddressed key question in the current coronavirus disease 2019 (COVID-19)
27	pandemic is the duration of immunity for which specific T cell responses against the
28	severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an indispensable
29	element. Being situated in Wuhan where the pandemic initiated enables us to conduct
30	the longest analyses of memory T cell responses against SARS-CoV-2 in COVID-19
31	convalescent individuals (CIs). Magnitude and breadth of SARS-CoV-2 memory CD4
32	and CD8 T cell responses were heterogeneous between patients but robust responses
33	could be detected up to 9 months post disease onset in most CIs. Loss of memory
34	CD4 and CD8 T cell responses were observed in only 16.13% and 25.81% of CIs,
35	respectively. Thus, the overall magnitude and breadth of memory CD4 and CD8 T cell
36	responses were quite stable and not inversely correlated with the time from disease
37	onset. Interestingly, the only significant decrease in the response was found for
38	memory CD4 T cells in the first 6-month post COVID-19 disease onset. Longitudinal
39	analyses revealed that the kinetics of SARS-CoV-2 memory CD4 and CD8 T cell
40	responses were quite heterogenous between patients. Loss of memory CD4 T cell
41	responses was observed more frequently in asymptomatic cases than after
42	symptomatic COVID-19. Interestingly, the few CIs in which SARS-CoV-2-specific
43	IgG responses disappeared showed more durable memory CD4 T cell responses than
44	CIs who remained IgG-positive for month. Collectively, we provide the first
45	comprehensive characterization of the long-term memory T cell response in CIs,
46	suggesting that SARS-CoV-2-specific T cell immunity is long-lasting in the majority
47	of individuals.

48 Introduction

Antigen-specific T and B cell responses play fundamental roles in the clearance of 49 50 most viral infections. Additionally, the establishment of T and B cell memory after 51 recovery is essential for protecting the host against disease upon re-exposure. Faced 52 by the unprecedented medical and socioeconomic crisis caused by severe acute 53 respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated coronavirus disease 2019 (COVID-19), the scientific community has ignited tremendous efforts to 54 55 map correlates of protection and determinants of immunity against SARS-CoV-2. 56 While antibody-based immunity is relatively well-studied, increasing evidences suggest that T cells may play a fundamental role in the resolution of COVID-19^{1,2}. 57 The current dogma is that SARS-CoV-2-specific CD4 and CD8 T cell responses, 58 59 responding at variably high frequencies recognizing multiple epitopes across the viral 60 proteome, can be detected in most individuals both during acute COVID-19 and convalescence afterwards ³⁻⁸. The magnitude of SARS-CoV-2-specific T cell 61 responses during the early phase is assumed to correlate with the magnitude of 62 antibody responses, and more severe and protracted disease usually drives a more 63 vigorous and, in terms of epitope coverage, broader T cell response ^{5,7,8}. However, it 64 65 has also been observed that cellular and humoral immune responses can become 66 uncoupled in some SARS-CoV-2-exposed individuals, who showed strong specific T cell immunity but lack detectable antibody responses ⁹. It is assumed that this results 67 from antibody responses waning more quickly than T cell responses ¹⁰ and that 68 SARS-CoV-2-specific antibody responses are rather short-lived, while T cell memory 69

70	seems to be more durable ^{10,11} . However, all available data on analyzing T cell
71	memory were mainly generated from individuals recovering from COVID-19 during a
72	relatively short follow-up period the longest observation duration being less than 60
73	days post disease onset (dpdo) ⁵ . To our knowledge, it is not yet known whether
74	natural infections with SARS-CoV-2 generate long-lasting memory T cell responses
75	and how memory T cell responses changes in a long-term post recovery.
76	Wuhan was the very first city hit by SARS-CoV-2. Accordingly, all patients who
77	experienced the longest phase of convalescence following COVID-19 reside here or
78	closeby. Wuhan also performed a thorough SARS-CoV-2 RNA test for every resident
79	in May, 2020 to preclude the possibility of local spread of the virus ever since. This
80	enabled us to characterize the long-term memory T cell responses in a cohort of
81	COVID-19 convalescent individuals (CIs) with an unprecedented observation time up
82	to 274 dpdo. Our results suggest that robust SARS-CoV-2 memory T cell responses
83	can be detected in the majority of CIs long-term post recovery.

84 Methods

85 Subjects

86 Thirty-one convalescent individuals who resolved their SARS-CoV-2 infection and 11 SARS-CoV-2-unexposed individuals (UIs) were recruited at the Department of 87 Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of 88 89 Science and Technology and the Department of Gastroenterology from April to 90 September 2020. The diagnosis of COVID-19 was based on the Guidelines for 91 Diagnosis and Treatment of Corona Virus Disease 2019 issued by the National Health Commission of China (7th edition). Informed written consent was obtained from each 92 93 patient and the study protocol was approved by the local medical ethics committee of 94 Union Hospital, Tongji Medical College, Huazhong University of Science and 95 Technology in accordance with the guidelines of the Declaration of Helsinki 96 (2020IEC-J-587).

97

98 **Preparation of PBMCs**

Peripheral blood mononuclear cells (PBMCs) of SARS-CoV-2-unexposed individuals
and patients were isolated using Ficoll density gradient centrifugation (DAKEWE
Biotech, Beijing) and were rapidly assessed by flow cytometry analysis without
intermittent cryo-preservation.

103

104 Analysis of effector T cell responses

Three pools of lyophilized peptides, consisting mainly of 15-mer sequences with 11amino acids (aa) overlap, either covering the immunodominant sequences of the

107 surface glycoprotein (S) or the complete sequences of the nucleocapsid
108 phosphoprotein (N) or the membrane glycoprotein (M) of SARS-CoV-2 were used for
109 cell stimulation (PepTivator® Peptide Pools, Miltenyi, Germany). On day 1, PBMCs
110 were resuspended in complete medium (RPMI 1640 containing 10% [v/v] fetal calf
111 serum, 100U/ml penicillin, 100µg/ml streptomycin, and 100µM
4-[2-hydroxyethyl]-1-piperazine ethanesulfonic acid [HEPES] buffer), and stimulated
with S, N or M peptide pools ($10\mu g/ml$) in the presence of anti-CD28 ($1\mu g/ml$; BD
Biosciences, USA) and recombinant interleukin (IL)-2 (20U/ml; Hoffmann-La Roche,
115 Italy). Cells without peptide stimulation and anti-CD3-stimulated $(1\mu g/ml; BD)$
Biosciences, USA) cells served as negative and positive controls, respectively. Fresh
117 medium containing IL-2 was added on day 4 and 7. On day 10, cells were
restimulated for 5 hours with the same peptide pool in the presence of brefeldin A
(BD Biosciences, San Diego, CA). Cells were then tested for IFN- γ , IL-2, and TNF- α
120 expression by intracellular cytokine staining. Specific cytokine responses were
121 calculated by subtracting the background activation (the percentage of cytokine
positive cells in the negative control) before further analysis. T cell responses were
defined as detectable if the frequency in the specifically stimulated culture exceeded
the unstimulated control at least twofold (stimulation index > 2). Samples with
responseless positive controls were excluded from further analyses.

127 Flow cytometry

128 Surface and intracellular staining for flow cytometry analysis were performed as

129	described previously ^{12,13} . For surface staining, cells were incubated with relevant
130	fluorochrome-labeled antibodies for 30 min at $4^{\circ}C$ in the dark. For intracellular
131	cytokine staining, cells were fixed and permeabilized using the Intracellular Fixation
132	& Permeabilization Buffer Set (Invitrogen, USA) and stained with FITC-anti-IFN- γ ,
133	PE-anti-IL-2 and APC-anti-TNF- α (BD Biosciences, USA). Approximately 100,000
134	PBMCs were acquired for each sample using a BD FACS Canto II flow cytometer.
135	Data analysis was performed using the FlowJo software V10.0.7 (Tree Star, Ashland,
136	OR, USA). Cell debris and dead cells were excluded from the analysis based on
137	scatter signals and Fixable Viability Dye eFluor 506.
138	

139 Statistical Analysis

Statistical analyses were performed using the SPSS statistical software package (version 22.0, SPSS Inc., Chicago, IL, USA). The Shapiro-Wilk method was used to test for normality. Mann-Whitney t-test, Pearson product-moment correlation coefficient and Fisher's exact test were used where appropriate. All reported P values were two-sided, and a P value less than 0.05 was considered statistically significant.

146 **Results**

147 Characteristics of the study cohort

148 To characterize SARS-CoV-2-specific memory CD4 and CD8 T cell responses in 149 individuals who had recovered from COVID-19, blood samples derived from 31 CIs 150 together with 11 UIs were assessed. The demographic profiles of all individuals are shown in Table 1. The median period between disease onset and blood sampling was 151 152 169 days (range: 83 to 274 days). Among all COVID-19 cases, 56.67% (17/31) were 153 hospitalized and 46.67% (14/31) received oxygen inhalation treatment. Leukopenia 154 and lymphopenia were observed in 52.94% (9/17) and 76.47% (13/17) of tested cases, 155 respectively. Increased C-reactive protein and IL-6 levels were apparent in 70.59% 156 (12/17) and 85.71% (12/14) of tested patients, respectively. Abnormal radiological 157 findings suggesting pneumonia were evident in 74.19% (23/31) CIs by chest 158 computed tomography scans (CT). Sixteen CIs (51.61%) had positive RT-PCR results 159 for viral RNA. All patients were confirmed anti-SARS-CoV-2 IgM and IgG 160 seropositive. At the time of last blood sampling, 45.16% (14/31) were IgG single 161 positive and 29.03% (9/31) were IgM and IgG double positive. Besides, 8 CIs who 162 had become IgG seronegative were purposely recruited to study the interdependence 163 of humoral and cellular immunity. The defining criteria for COVID-19 convalescence 164 were as follows: being afebrile for more than 3 days, resolution of respiratory 165 symptoms, substantial improvement of chest CT images, and two consecutive 166 negative RT-qPCR tests for viral RNA in respiratory tract swab samples obtained at 167 least 24 h apart. At the time of blood sampling, all CIs were negative for viral RNA and had no medical conditions related to COVID-19.

169

170 Characterization of the long-term memory T cell response specific to SARS-CoV-2

171 PBMCs of UIs and CIs were re-stimulated with 3 panels of overlapping peptides 172 spanning the SARS-CoV-2 proteins S, N, and M, respectively, to determine memory T 173 cell responses ex vivo. We used an intracellular cytokine staining flow cytometry assay (Fig. S1), and the magnitude of the overall cytokine responses [interferon 174 175 (IFN)- γ , interleukin (IL)-2, and tumor necrosis factor (TNF)- α] for CD4 and CD8 T 176 cells of all participants are shown in Fig. 1a. Besides, the magnitude and breadth (to 177 how many peptide pools T cells responded) of the IFN- γ , IL-2 or TNF- α -positive T 178 cells are also shown individually in Fig. 1b and 1c. Consistent with previous reports ^{4,6}, a proportion of T cells weakly responded to SARS-CoV-2 peptides in UIs (both 179 180 CD4 and CD8 T cells: 27.27%, 3/11), but with a much lower magnitude than those in 181 CIs (Fig. 1a-1c). In general, memory T cell responses considerably varied in breadth 182 and magnitude between individual CIs. The magnitudes of TNF- α responses against S, 183 IFN- γ or TNF- α responses against N, and IFN- γ responses against M of CD4 and 184 CD8 T cells were significantly positively correlated (Fig. 1d and S2). Memory CD4 T 185 cell responses against a single, two or three peptide pools of the different proteins 186 were detected in 6.45% (2/31), 19.35% (6/31), and 58.06% (18/31) of CIs, 187 respectively (Fig. 1e). Memory CD8 T cell responses against a single, two or three 188 peptide pools of the different proteins were detected in 29.03% (9/31), 16.13% (5/31), 189 and 29.03% (9/31) of CIs, respectively (Fig. 1f). Interestingly, 16.13% (5/31 for CD4)

and 25.81% (8/31 for CD8) of CIs did not exhibit memory T cell responses against the three viral proteins (Fig. 1e and 1f). There were only 9.68% (3/31) of CIs who showed no any detectable memory T cell responses against the three proteins for both CD4 and CD8 T cells. Taken together, while the vast majority of CIs had clearly measurable T cell responses against SARS-CoV-2, the data also shows substantial individuality in SARS-CoV-2 memory T cell responses.

197 Next, we analyzed the correlation between the magnitude and breadth of the overall 198 SARS-CoV-2 memory T cell responses and the time after disease onset. The CIs were 199 studied up to 9 month after disease onset and we combined the data from all patients 200 for the analysis. In addition, we separately analyzed two different time periods after 201 COVID-19, the first 6 month and the following 3 months for changes in memory T 202 cell responses. For CD4 T cells, the magnitude and breadth of SARS-CoV-2 memory 203 responses against S, N or M showed no significant correlation with days post disease 204 onset (dpdo) (Fig. 2a), suggesting that the CD4 T cell response was relatively stable 205 over time. Interestingly, however, during the first 180 dpdo a significant inverse 206 correlation between the magnitude of the memory CD4 T cell response against S and dpdo was observed ($r^2=0.480$, P=0.003, Fig. 2b). In contrast, during the late 207 208 convalescent phase between 6 and 9 month after COVID-19 the magnitude of memory CD4 T cell responses against S ($r^2=0.327$, P=0.041) and N ($r^2=0.328$, 209 210 P=0.041) was positively correlated with dpdo (Fig. 2c). For CD8 T cells, the 211 magnitude and breadth of SARS-CoV-2 memory responses against S, N or M did also

212	not show a significant correlation with dpdo (Fig. 2e). In contrast to CD4 T cells, CD8
213	T cells did not show a biphasic response during the two different time phases after
214	COVID-19 (Fig. 2d-2f). No significant changes in the magnitude or breath of the CD8
215	T cell response to any of the SARS-CoV-2 proteins was observed in the early or late
216	phase, with the only exception that a positive correlation between the breadth of
217	memory CD8 T cell responses and dpdo after 180 days was observed (r^2 =0.311,
218	P=0.048, Fig. 2f).

These results indicated that the overall SARS-CoV-2 memory CD4 and CD8 T cell responses were long-lasting. However, for memory CD4 T cells a decline in the magnitude of the response was observed during the early recovery phase which was reversed in the following months, highlighting the need for long-term follow up studies such as this.

224

225 To further characterize the kinetics of SARS-CoV-2 memory T cell responses, the 226 magnitude of T cell responses were longitudinally examined in more detail in 4 227 individual CIs. Strong and broad CD4 (in all 4 individuals) and CD8 (3 out of 4 228 individuals) T cell responses against S, N, and M were detected at the first sampling time point (83-127 dpdo, Fig. 3a-3d). In 2 out of 4 individuals, a decrease in the 229 magnitude of both SARS-CoV-2 memory CD4 and CD8 T cell responses was 230 231 observed on 147 dpdo and 214 dpdo, respectively (Fig. 3a and 3b), which was most 232 pronounced for the response against the S peptide pool. In contrast, one individual 233 showed sustained SARS-CoV-2 memory CD4 and CD8 T cell responses over time

234	(Fig. 3c), whereas another individual also showed sustained SARS-CoV-2 memory
235	CD4 T cell responses but a strong increase in S-, N-, and M-specific memory CD8 T
236	cell responses, which were undetectable at the early time point in this individual, (Fig.
237	3d).
238	
239	Taken together, these results suggested that long-term memory T cell responses to
240	SARS-CoV-2 are quite patient-specific and heterogeneous, and may even fluctuate
241	over time in individuals.
242	
243	Correlation between the long-term memory T cell response to SARS-CoV-2 and
244	disease severity
245	Next, we examined the differences in the magnitude and breadth of memory CD4 and
246	CD8 T cell responses in CIs according to their different degrees of COVID-19
247	severity. CIs were stratified according to the severity of disease into asymptomatic
248	(ACs: 19.35%, 6/31), moderate (MCs: 61.29%, 19/31), and severe COVID-19 cases
249	(SCs: 19.35%, 6/31). No significant difference in the age between the symptomatic
250	and commutamentic ecces was charged. In concernal the magnitude of CADS CoV 2
	and asymptomatic cases was observed. In general, the magnitude of SARS-Cov-2
251	memory T cell responses against S, N or M, either for the overall or individual

were observed between the magnitude of SARS-CoV-2 memory T cell responses and

253

255

were not statistically significant (Fig. 4a, 4b and S3). Also no significant correlations

clinical parameters indicating disease severity, including white blood cell and

256	lymphocyte numbers, IL-6, C-reactive protein, D-dimer, lactate dehydrogenase
257	(LDH), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total
258	bilirubin, serum creatinine, fibrinogen (FIB), and blood urea nitrogen levels (Fig. S4).
259	However, memory CD4 T cell responses against S, N, and M became undetectable in
260	50% (3/6) of ACs, but only in 5.26% (1/19) of MCs (P=0.031, Fig. 4a). Memory CD8
261	T cell responses against S, N, and M became undetectable in 50% (3/6) of ACs, but
262	only in 21.05% (4/19) of MCs and 16.67% (1/6) of SCs, respectively (Fig. 4b). No
263	AC showed memory CD8 T cell responses against multiple peptide pools, while 52.63%
264	(10/19) of MCs and 66.67 (4/6) of SCs showed memory CD8 T cell responses to at
265	least 2 different peptide pools (Fig. 4b).
266	

267 Elderly people are predisposed to develop severe COVID-19 and mortality increases dramatically with age ¹⁴. We have previously shown that the cytotoxic CD8 T cell 268 response is impaired in elderly COVID-19 patients ¹⁵. Next, we analyzed correlations 269 270 between the magnitude and breadth of memory CD4 and CD8 T cell responses and 271 age in CIs. We observed that the breadth, but not the magnitude of memory CD4 T cell responses was inversely correlated with the age of CIs ($r^2=0.162$, P=0.016, Fig. 272 5a). No significant correlation between the magnitude and breadth of memory CD8 T 273 274 cell responses and the age of CIs were observed (Fig. 5b).

275

276 CD4 memory T cell responses in individuals who lost their IgG response to 277 SARS-CoV-2

278	During the acute phase of COVID-19, T cell responses positively correlated with the
279	magnitude of antibody responses ^{5,7,8} . However, to our knowledge it is not clear
280	whether this association is maintained during the long-term convalescence. To this
281	end, we compared memory T cell responses and antibody responses in CIs from 83 to
282	274 dpdo. As shown in Fig. S5, the magnitude of memory CD4 and CD8 T cell
283	responses against S and N showed no significant correlation with the titers of
284	corresponding IgG against S and N. Form our large convalescent out-patient cohort
285	very few patients lose their SARS-COV-2-specific IgG responses over time. We were
286	interested if those patients still kept their memory T cells. We therefore selected 8
287	IgG-seronegative CIs and compared them to 23 seropositive CIs. At the time point of
288	last sampling the age of the IgG-seronegative CIs was significantly lower, and the
289	dpdo was significantly higher, than those of the 23 IgG-seropositive CIs (Fig. S6a). To
290	overcome this bias, we compared the magnitude and breadth of memory T cell
291	responses of IgG-seronegative CIs with 7 selected IgG-seropositive CIs with
292	comparable age and dpdo (Fig. S6b). Interestingly, memory CD4 T cell responses
293	against N and M were significantly higher in IgG-seronegative CIs than those in
294	IgG-seropositive CIs (Fig. 6a). A tendency of increased memory CD4 T cell response
295	against S in IgG-seronegative CIs was also observed, although the difference
296	remained close to the borderline of statistical significance (P=0.052, Fig. 6a). All
297	IgG-seronegative CIs showed memory CD4 T cell responses to at least 2 peptide
298	pools, while 28.57% IgG-seropositive CIs showed no memory CD4 T cell responses
299	to S, N or M (Fig. 6b). In contrast to CD4 T cells, no significant differences in the

magnitude and breadth of memory CD8 T cell responses between the
IgG-seronegative and -seropositive CIs were observed (Fig. 6c and 6d), indicating
that CD8 T cells seem to be less correlated with humoral immune responses as
compared to CD4 T cells.

304

305 Discussion

306 One of the most important and challenging questions facing medicine today concerns 307 the extent to which immunity develops and persists following COVID-19. Previous 308 studies suggest that the persistence of protective immunity against different coronaviruses varies significantly, since those against seasonal coronavirus are 309 short-lived ¹⁶ while those against SARS and *middle east respiratory syndrome* 310 coronavirus (MERS) are described to last longer ^{6,17,18}. Recent studies have 311 312 demonstrated that macaques infected with SARS-CoV-2 are resistant to reinfection 313 with the same virus isolate following recovery from their initial infection, suggesting 314 the cellular and/or humoral immunity facilitated by the primary infection might have protected the same nonhuman primates against secondary encounters ^{19,20}. However, 315 in both studies, reinfections with SARS-CoV-2 were carried out within a relative short 316 317 time window (4 and 5 weeks after the primary infection). In contrast to the 318 observation in the macaque model, there are some reports demonstrating the principle possibility of reinfections with SARS-CoV-2 in humans²¹⁻²⁴. It has been suggested 319 320 that the lifespan of the humoral response following SARS-CoV-2 infection is relatively short, especially in mild and asymptomatic cases ²⁵. Some believe that 321

322 although SARS-CoV-2 infection may blunt long-lived antibody responses, immune 323 memory might still be achieved through virus-specific memory T cell responses², 324 which have been detected in most recently recovered individuals, including asymptomatic cases and those with undetectable antibody responses ⁹. Here we 325 326 provide, to our knowledge, the first characterization of long-term memory T cell 327 responses in a cohort of COVID-19 convalescent individuals up to 9 months 328 following primary SARS-CoV-2 infection. We show that the magnitude and breadth 329 of long-term memory T cell responses to SARS-CoV-2 are heterogeneous. While the 330 majority of CIs demonstrate strong and broad memory T cell responses up to 9 331 months post disease onset, some individuals have lost their T cell responses against 332 the studied antigens within half a year. The magnitude of SARS-CoV-2 memory CD4 333 T cell response is inversely correlated with the time that had elapsed from disease 334 onset within 180 days, suggesting SARS-CoV-2 memory CD4 T cell response may 335 wane over time at the early months following primary SARS-CoV-2 infection. 336 Intriguingly, half of the asymptomatic cases have lost their memory CD4 and CD8 T 337 cell responses, suggesting the memory T cell responses might be less durable in 338 asymptomatic cases than in symptomatic cases. The breadth of memory CD4 T cell 339 responses were inversely correlated with the age of the patients, suggesting the 340 memory T cell responses might also be less durable in elderly individuals. Moreover, 341 the kinetics of memory T cell responses are heterogeneous in the herein examined CIs, 342 while some show a sharp decline of memory T cell responses over time, others show 343 rather sustained or even increasing memory T cell responses. Our data document a

344	durability of cellular immunity against SARS-CoV-2, however, for a fraction of
345	elderly individuals with asymptomatic infections a considerable waning of cellular
346	immunity may occur. Our results also suggest that the intensity of SARS-CoV-2
347	memory T cell responses detected in peripheral blood may fluctuate over time in CIs,
348	which is unlikely to be caused by reexposion to SARS-CoV-2, since the the
349	possibility of local spread of the virus in Wuhan and nearby area has been precluded
350	by the thorough SARS-CoV-2 RNA test conducted in May for every resident. Future
351	studies are needed to closely monitor the SARS-CoV-2 memory T cell responses to
352	address how the intensities of these responses are regulated in CIs.

354 Different from the observation during and shortly after the acute phase of SARS-CoV-2 infection ^{5,7,8}, we observe that the magnitudes of long-term 355 356 SARS-CoV-2-specific cellular and humoral responses are not positively correlated 357 with each other. In contrast, IgG-seronegative CIs demonstrate even stronger 358 SARS-CoV-2-specific memory CD4 T cell responses than IgG-seropositive CIs. A 359 recent study started to investigate the possible mechanisms of short-lived antibody 360 responses observed in COVID-19 patients and has reported that germinal centers in secondary lymphoid organs were largely absent during the acute phase of COVID-19 361 ²⁶. The authors speculate that the absence of germinal centers is a result of abundant 362 Th1 cell responses and aberrant extra-follicular TNF- α accumulation ²⁶. Consistently, 363 364 our current observation, that CIs with short-lived antibody responses demonstrate an 365 increased magnitude of SARS-CoV-2-specific CD4 T cell responses, provides the first

366	evidence that the above-mentioned effect may extent to a far longer period in the			
367	convalescent phase of COVID-19. Although it remains unclear which arms of the			
368	adaptive immune response are responsible for protection against SARS-CoV-2			
369	infection, our data demonstrate that CIs may possess at least one arm of the adaptive			
370	immune response against SARS-CoV-2 long-term post recovery. Further			
371	characterization of the protective roles as well as the interaction of cellular and			
372	humoral immune responses against SARS-CoV-2 has significant implications for			
373	vaccine development and application especially in terms of the need for booster			
374	vaccinations.			

Taken together, we provide the first comprehensive characterization of the long-term memory T cell responses against SARS-CoV-2, suggesting that the SARS-CoV-2-specific T cell immunity is sustained in the majority of CIs up to 9 months post infection. The observation that convalescent individuals turning IgG-seronegative generated robust and sustained memory T cell responses further suggests that natural infection could prevent recurrent episodes of severe COVID-19.

382

384 Conflict-of-interest disclosure

385 The authors declare no relevant conflict of interest.

386

387 Acknowledgement

388 This work is supported by the Fundamental Research Funds for the Central 389 Universities (2020kfyXGYJ028, 2020kfyXGYJ046 and 2020kfyXGYJ016), the 390 National Natural Science Foundation of China (81861138044 and 91742114), the 391 National Science and Technology Major Project (2017ZX10202203), and the Medical 392 Faculty of the University of Duisburg-Essen and Stiftung Universiätsmedizin, 393 University Hospital Essen, Germany. M.T., K.S., M.L., and U.D. receive funding 394 from the Deutsche Forschungsgemeinschaft (DFG) for example through the 395 RTG1949/2.

References

398	1.	Chen, Z. & John Wherry, E. T cell responses in patients with COVID-19. Nature reviews.
399		Immunology 20 , 529-536 (2020).
400	2.	Canete, P.F. & Vinuesa, C.G. COVID-19 Makes B Cells Forget, but T Cells Remember. Cell
401		183 , 13-15 (2020).
402	3.	Weiskopf, D., et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19
403		patients with acute respiratory distress syndrome. Science immunology 5(2020).
404	4.	Braun, J., et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19.
405		Nature (2020).
406	5.	Peng, Y., et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by
407		SARS-CoV-2 in UK convalescent individuals following COVID-19. Nature immunology
408		(2020).
409	6.	Le Bert, N., et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS,
410		and uninfected controls. Nature 584, 457-462 (2020).
411	7.	Ni, L., et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in
412		COVID-19 Convalescent Individuals. Immunity 52, 971-977 e973 (2020).
413	8.	Thieme, C.J., et al. Robust T Cell Response Toward Spike, Membrane, and Nucleocapsid
414		SARS-CoV-2 Proteins Is Not Associated with Recovery in Critical COVID-19 Patients. Cell
415		reports. Medicine 1, 100092 (2020).
416	9.	Sekine, T., et al. Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or
417		Mild COVID-19. Cell 183, 158-168 e114 (2020).
418	10.	Altmann, D.M. & Boyton, R.J. SARS-CoV-2 T cell immunity: Specificity, function, durability,
419		and role in protection. Science immunology 5(2020).
420	11.	Canete, P.F. & Vinuesa, C.G. COVID-19 Makes B Cells Forget, but T Cells Remember. Cell
421		(2020).
422	12.	Liu, J., et al. TLR1/2 ligand-stimulated mouse liver endothelial cells secrete IL-12 and trigger
423		CD8+ T cell immunity in vitro. Journal of immunology (Baltimore, Md. : 1950) 191,
424		6178-6190 (2013).
425	13.	Wang, Q., et al. Hepatitis B Virus-Specific CD8+ T Cells Maintain Functional Exhaustion
426		after Antigen Reexposure in an Acute Activation Immune Environment. Frontiers in
427		immunology 9 , 219 (2018).
428	14.	Liu, K., Chen, Y., Lin, R. & Han, K. Clinical features of COVID-19 in elderly patients: A
429		comparison with young and middle-aged patients. The Journal of infection 80, e14-e18
430		(2020).
431	15.	Westmeier, J., et al. Impaired Cytotoxic CD8(+) T Cell Response in Elderly COVID-19
432		Patients. <i>mBio</i> 11 (2020).
433	16.	Edridge, A.W.D., et al. Seasonal coronavirus protective immunity is short-lasting. Nature
434		<i>medicine</i> (2020).
435	17.	Choe, P.G., et al. MERS-CoV Antibody Responses 1 Year after Symptom Onset, South Korea,
436		2015. Emerging infectious diseases 23, 1079-1084 (2017).
437	18.	Mo, H., et al. Longitudinal profile of antibodies against SARS-coronavirus in SARS patients
438		and their clinical significance. Respirology 11, 49-53 (2006).
439	19.	Deng, W., et al. Primary exposure to SARS-CoV-2 protects against reinfection in rhesus

440		macaques. Science 369, 818-823 (2020).
441	20.	Chandrashekar, A., et al. SARS-CoV-2 infection protects against rechallenge in rhesus
442		macaques. Science 369, 812-817 (2020).
443	21.	Larson, D., et al. A Case of Early Re-infection with SARS-CoV-2. Clin Infect Dis (2020).
444	22.	To, K.K., et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2
445		strain confirmed by whole genome sequencing. Clin Infect Dis (2020).
446	23.	Bongiovanni, M. COVID-19 re-infection in an healthcare worker. J Med Virol (2020).
447	24.	Tillett, R.L., et al. Genomic evidence for reinfection with SARS-CoV-2: a case study. Lancet
448		Infect Dis (2020).
449	25.	Long, Q.X., et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2
450		infections. Nature medicine (2020).
451	26.	Kaneko, N., et al. Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in
452		COVID-19. Cell 183, 143-157 e113 (2020).

	Unexposed	Convalescent
Parameter	individuals	Individuals
n	11	31
Gender (M/F)	3/8	3/28
Age	30.5	44.1
Asymptomatic cases %	/	19.35% (6/31)
Mild cases %		61.29% (19/31)
Severe cases %	/	19.35% (6/31)
Days from onset		169 (83-274)
Days from recovery	/	151 (42-249)
Clinical parameters		
Fever %	/	64.52% (20/31)
Respiratory symptoms %	/	58.06% (18/31)
Hospitalized %	/	56.67% (17/31)
Oxygen therapy %	/	46.67% (14/31)
Laboratory parameters		
Leukopenia %	/	52.94% (9/17)
Lymphopenia %	/	76.47% (13/17)
Increased CRP %	/	70.59% (12/17)
Increased ferritin %	/	40.00% (4/10)
Increased LDH %	/	40.00% (6/15)
Abnormal liver function %	/	53.33% (8/15)
Abnormal renal function %	/	0 (0/15)
Increased CK %	/	20.00% (3/15)
Abnormal blood coagulation %	/	6.67% (1/15)
Increased IL-6 %	/	85.71% (12/14)
CT scan		
Normal %	/	25.81% (8/31)
Viral pneumonia %	/	74.19% (23/31)
Virological markers		. ,
RNA positive %	/	51.61% (16/31)
IgG single positive %	/	45.16% (14/31)
IgM & IgG positive %	/	29.03% (9/31)
IgG negative %	/	25.81% (8/31)

454 Table 1. Baseline characteristics of the Chinese cohort.

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.15.383463; this version posted November 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

457 Figures

Figure 1. The magnitude and breadth of long-term SARS-CoV-2 memory T cell
 responses are heterogeneous in COVID-19 convalescent individuals. PBMCs of
 SARS-CoV-2-unexposed individuals (UI) and COVID-19 convalescent individuals

462	(CI) were tested for responses to 3 panels of overlapping peptides spanning the
463	SARS-CoV-2 S, N, and M, respectively, using intracellular cytokine staining flow
464	cytometry assay. (a) The magnitude of overall cytokine responses of CD4 and CD8 T
465	cells against S, N, and M of SARS-CoV-2 of all participants are shown. (b and c) The
466	magnitude of IFN- γ , IL-2, and TNF- α responses of CD4 and CD8 T cells specific to S,
467	N, and M of SARS-CoV-2 of all participants are also shown individually. Each
468	colored segment represents the source protein corresponding to peptide pools eliciting
469	T cell responses. Bars superimpose percentages of separate T cell culture experiments
470	individually stimulated with indicated antigens. (d) The correlations between the
471	magnitudes of memory CD4 and CD8 T cell responses, as represented by indicated
472	cytokine production, are shown (Pearson product-moment correlation coefficient). (e
473	and f) Breadth of T cell responses of UI and CI. The breadth of T cell responses was
474	calculated by the number of reactive peptide pools of S, N, and M. S: surface
475	glycoprotein; N: nucleocapsid phosphoprotein; M: membrane glycoprotein; IFN:
476	interferon; IL: interleukin; TNF: tumor necrosis factor.

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.15.383463; this version posted November 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

478 Figure 2. Correlation between the magnitude of SARS-CoV-2 memory T cell

25

479	responses and the time that had elapsed from disease onset. The correlation
480	between the magnitude of memory CD4 T cell responses specific to S, N and M and
481	days post disease onset up to 274 days (a), within 180 days (b) and over 180 days (c)
482	are shown. The correlation between the magnitude of memory CD8 T cell responses
483	specific to S, N and M and days post disease onset up to 274 days (d), within 180 days
484	(e) and over 180 days (f) are shown. Pearson product-moment correlation coefficient
485	test was used to test the significance and P value and r^2 value (correlation coefficient)
486	are indicated in each panel. S: surface glycoprotein; N: nucleocapsid phosphoprotein;
487	M: membrane glycoprotein.

Figure 3. Kinetics of memory T cell responses to SARS-CoV-2 in COVID-19
 convalescent individuals. PBMCs were longitudinally collected from 4 COVID-19
 convalescent individuals at indicated time points and were tested for memory T cell

492	responses recognizing SARS-CoV-2 S, N or M by using intracellular cytokine
493	staining flow cytometry assay. (a) CI-7; (b) CI-10; (c) CI-12; (d) CI-15. S: surface
494	glycoprotein; N: nucleocapsid phosphoprotein; M: membrane glycoprotein; PC:
495	positive control stimulation; IFN: interferon; IL: interleukin; TNF: tumor necrosis
496	factor.
497	

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.15.383463; this version posted November 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

499

Figure 4. Loss of SARS-CoV-2 memory CD4 T cell responses is more frequent in asymptomatic cases than symptomatic cases. The magnitude and breadth of memory CD4 (a) and CD8 (b) T cell responses are compared between the

- so3 asymptomatic (AC, n=6), moderate (MC, n=19) and severe (SC, n=6) cases. S:
- surface glycoprotein; N: nucleocapsid phosphoprotein; M: membrane glycoprotein.

Figure 5. The breadth of long-term SARS-CoV-2 memory CD4 T cell responses is negatively correlated with the age of COVID-19 convalescent individuals. The correlation between the magnitude and breadth of memory CD4 (a) and CD8 (b) T cell responses specific to S, N and M and age are shown. Pearson product-moment correlation coefficient test was used to test the significance and P value and r^2 value (correlation coefficient) are indicated in each panel. S: surface glycoprotein; N: nucleocapsid phosphoprotein; M: membrane glycoprotein.

517 Figure 6. The long-term SARS-CoV-2 memory CD4 T cell responses is robust in 518 IgG-seronegative COVID-19 convalescent individuals. The magnitude (a) and 519 breadth (b) of memory CD4 T cell responses are compared between IgG-seronegative 520 (IgG-, n=8) and IgG-seropositive (IgG+, n=7) CIs. The magnitude (c) and breadth (d) 521 of memory CD8 T cell responses are compared between IgG-seronegative (IgG-, n=8) and IgG-seropositive (IgG+, n=7) CIs. Statistically significant differences are 522 indicated by asterisks (* < 0.05, Non-parametric Mann-Whitney test). S: surface 523 524 glycoprotein; N: nucleocapsid phosphoprotein; M: membrane glycoprotein.